-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAll About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
3D Convergence of Multiboard PCB and IC Packaging Design
July 18, 2018 | Bob Potock, ZukenEstimated reading time: 3 minutes

The electronic product design process is being challenged like never before, with the need to develop feature-rich, light, compact products at a lower cost, in less time. To address these challenges, designers are combining chips and boards in new configurations, such as complex 3D stacked structures, or new packaging technologies like package-on-package (PoP) and system-in-package (SiP). They are also embedding passive and active components on inner layers, inside cavities and within the dielectric of the board stack-up.
Traditional 2D PCB design systems are used to design one PCB at a time in isolation from the other PCBs within a product, and also in isolation from the ICs, packages, and enclosure. Validating connections between the PCBs, collision checking the boards to the enclosure, and reducing interconnection distance to the ICs requires time-consuming manual operations that are error-prone and limit the potential for reuse.
A new generation of 3D multiboard product-level design tools offer major improvements by managing multiboard placement in both 2D and 3D, and enabling co-design of the chip, package and board in a single environment. Multiboard design makes it possible to create and validate a design with any combination of system-on-chips (SOCs), packages, and PCBs as a complete system. Chip-package-board co-design enables designers to optimize routability via pin assignment and I/O placement to minimize layer counts between the package, chip and board. The new design methodology makes it possible to deliver more functional, higher performing and less expensive products to market in less time.
Multiboard Design Challenges
Today’s complex multiboard electronic products create design challenges, such as planning and management of interconnects at the system level. In current-generation tools, the signal verification process for a multiboard design involves exporting pin lists that include net names for each board connector and correlating the net names to the master list of net names. In many cases, it’s also necessary to manually verify each board connector’s signal name. With mechanical engineers and board designers working with disconnected systems it’s difficult, if not impossible, to intelligently manage connectivity and changes between boards. Using a spreadsheet or some other disconnected document to manage the large number of interconnects between the PCBs in the system is time-consuming and prone to error.
When mechanical engineers have inaccurate information on the electrical design or electrical engineers have inaccurate information on the mechanical design, the result in many cases is that batteries don’t fit, mounting screws create shorts against PCBs, and connectors don’t mate with packaging openings. Improper management can easily result in wasted product development time, scrapped boards and slipped schedules.
The combination of increasing capabilities, shrinking size and more complex external shapes means that electronics must increasingly consider the shape of the package while the mechanical design is more dependent than ever on the physical aspects of the internal electronics. Multi-board designs make ECAD-to-MCAD translation more difficult because of the need to communicate the position of connectors and other common points between the boards.
Yet in the current generation of tools, the collision-checking process involves exporting placement information, usually in IDF format, for each PCB to a mechanical engineer for assembly analysis. PCB design tools have continued to focus on working in 2D on one PCB at a time, with the electrical work done in 2D and then the 2D design being exported into 3D mechanical design software where the boards are positioned and checked for interference. The PCB designer is unable to, for example, position two boards on top of each other to see how they fit together. This is normally done after the board design has been exported to the mechanical design tool. Interdependencies between interlocking boards and their enclo-sure in complex products are critical.
To read this entire article, which appeared in the June 2018 issue of Design007 Magazine, click here.
Suggested Items
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
Elementary Mr. Watson: Retro Routers vs. Modern Boards—The Silent Struggle on Your Screen
06/26/2025 | John Watson -- Column: Elementary, Mr. WatsonThere's a story about a young woman preparing a holiday ham. Before putting it in the pan, she cuts off the ends. When asked why, she shrugs and says, "That's how my mom always did it." She asks her mother, who gives the same answer. Eventually, the question reaches Grandma, who laughs and says, "Oh, I only cut the ends off because my pan was too small." This story is a powerful analogy for how many PCB designers approach routing today.
Siemens Turbocharges Semiconductor and PCB Design Portfolio with Generative and Agentic AI
06/24/2025 | SiemensAt the 2025 Design Automation Conference, Siemens Digital Industries Software today unveiled its AI-enhanced toolset for the EDA design flow.
Cadence AI Autorouter May Transform the Landscape
06/19/2025 | Andy Shaughnessy, Design007 MagazinePatrick Davis, product management director with Cadence Design Systems, discusses advancements in autorouting technology, including AI. He emphasizes a holistic approach that enhances placement and power distribution before routing. He points out that younger engineers seem more likely to embrace autorouting, while the veteran designers are still wary of giving up too much control. Will AI help autorouters finally gain industry-wide acceptance?
Beyond Design: The Metamorphosis of the PCB Router
06/18/2025 | Barry Olney -- Column: Beyond DesignThe traditional PCB design process is often time-consuming and labor-intensive. Routing a complex PCB layout can consume up to 30% of a designer’s time, and addressing this issue is not straightforward. We have all encountered this scenario: You spend hours setting the constraints and finally hit the Go button, only to be surprised by the lack of visual appeal and the obvious flaws in the result.