-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
3D Convergence of Multiboard PCB and IC Packaging Design
July 18, 2018 | Bob Potock, ZukenEstimated reading time: 3 minutes
The electronic product design process is being challenged like never before, with the need to develop feature-rich, light, compact products at a lower cost, in less time. To address these challenges, designers are combining chips and boards in new configurations, such as complex 3D stacked structures, or new packaging technologies like package-on-package (PoP) and system-in-package (SiP). They are also embedding passive and active components on inner layers, inside cavities and within the dielectric of the board stack-up.
Traditional 2D PCB design systems are used to design one PCB at a time in isolation from the other PCBs within a product, and also in isolation from the ICs, packages, and enclosure. Validating connections between the PCBs, collision checking the boards to the enclosure, and reducing interconnection distance to the ICs requires time-consuming manual operations that are error-prone and limit the potential for reuse.
A new generation of 3D multiboard product-level design tools offer major improvements by managing multiboard placement in both 2D and 3D, and enabling co-design of the chip, package and board in a single environment. Multiboard design makes it possible to create and validate a design with any combination of system-on-chips (SOCs), packages, and PCBs as a complete system. Chip-package-board co-design enables designers to optimize routability via pin assignment and I/O placement to minimize layer counts between the package, chip and board. The new design methodology makes it possible to deliver more functional, higher performing and less expensive products to market in less time.
Multiboard Design Challenges
Today’s complex multiboard electronic products create design challenges, such as planning and management of interconnects at the system level. In current-generation tools, the signal verification process for a multiboard design involves exporting pin lists that include net names for each board connector and correlating the net names to the master list of net names. In many cases, it’s also necessary to manually verify each board connector’s signal name. With mechanical engineers and board designers working with disconnected systems it’s difficult, if not impossible, to intelligently manage connectivity and changes between boards. Using a spreadsheet or some other disconnected document to manage the large number of interconnects between the PCBs in the system is time-consuming and prone to error.
When mechanical engineers have inaccurate information on the electrical design or electrical engineers have inaccurate information on the mechanical design, the result in many cases is that batteries don’t fit, mounting screws create shorts against PCBs, and connectors don’t mate with packaging openings. Improper management can easily result in wasted product development time, scrapped boards and slipped schedules.
The combination of increasing capabilities, shrinking size and more complex external shapes means that electronics must increasingly consider the shape of the package while the mechanical design is more dependent than ever on the physical aspects of the internal electronics. Multi-board designs make ECAD-to-MCAD translation more difficult because of the need to communicate the position of connectors and other common points between the boards.
Yet in the current generation of tools, the collision-checking process involves exporting placement information, usually in IDF format, for each PCB to a mechanical engineer for assembly analysis. PCB design tools have continued to focus on working in 2D on one PCB at a time, with the electrical work done in 2D and then the 2D design being exported into 3D mechanical design software where the boards are positioned and checked for interference. The PCB designer is unable to, for example, position two boards on top of each other to see how they fit together. This is normally done after the board design has been exported to the mechanical design tool. Interdependencies between interlocking boards and their enclo-sure in complex products are critical.
To read this entire article, which appeared in the June 2018 issue of Design007 Magazine, click here.
Suggested Items
PCB Layout Rules of Thumb for Consideration
11/25/2024 | Patrick Davis, Cadence Design SystemsJust because a “rule of thumb” is usually based on experience instead of precise facts doesn’t negate its value. For instance, when I told my kids that a good rule of thumb was not to back-talk to their mother, they discovered very quickly how accurate my advice was once they crossed that line. There are a lot of rules of thumb that we rely on daily, including those that apply to PCB design.
HPC Customer Engages Sondrel for High End Chip Design
11/25/2024 | SondrelSondrel, a leading provider of ultra-complex custom chips, has announced that it has started front end, RTL design and verification work on a high-performance computing (HPC) chip project for a major new customer.
Rules of Thumb for PCB Layout
11/21/2024 | Andy Shaughnessy, I-Connect007The dictionary defines a “rule of thumb” as “a broadly accurate guide or principle, based on experience or practice rather than theory.” Rules of thumb are often the foundation of a PCB designer’s thought process when tackling a layout. Ultimately, a product spec or design guideline will provide the detailed design guidance, but rules of thumb can help to provide the general guidance that will help to streamline the layout process and avoid design or manufacturing issues.
PCB Design Software Market Expected to Hit $9.2B by 2031
11/21/2024 | openPRThis report provides an overview of the PCB design software market, detailing key market drivers, challenges, technological advancements, regional dynamics, and future trends. With a projected compound annual growth rate (CAGR) of 13.4% from 2024 to 2031, the market is expected to grow from USD 3.9 billion in 2024 to USD 9.2 billion by 2031.
KYZEN to Spotlight KYZEN E5631, AQUANOX A4618 and Process Control at SMTA Silicon Valley Expo and Tech Forum
11/21/2024 | KYZEN'KYZEN, the global leader in innovative environmentally friendly cleaning chemistries, will exhibit at the SMTA Silicon Valley Expo & Tech Forum on Thursday, December 5, 2024 at the Fremont Marriott Silicon Valley in Fremont, CA.