'Optical Rocket' Created with Intense Laser Light
September 17, 2018 | University of Nebraska-LincolnEstimated reading time: 2 minutes

In a recent experiment at the University of Nebraska–Lincoln, plasma electrons in the paths of intense laser light pulses were almost instantly accelerated close to the speed of light.
Image Caption: One of the lasers at the Extreme Light Laboratory at the University of Nebraska-Lincoln, where a recent experiment accelerated electrons to near the speed of light.
Physics professor Donald Umstadter, who led the research, said the new application might aptly be called an “optical rocket” because of the tremendous amount of force that light exerted in the experiment. The electrons were subjected to a force almost a trillion-trillion-times greater than that felt by an astronaut launched into space.
“This new and unique application of intense light can improve the performance of compact electron accelerators,” he said. “But the novel and more general scientific aspect of our results is that the application of force of light resulted in the direct acceleration of matter.”
The optical rocket is the latest example of how the forces exerted by light can be used as tools, Umstadter said.
Normal intensity light exerts a tiny force whenever it reflects, scatters or is absorbed. One proposed application of this force is a “light sail” that could be used to propel spacecraft. Yet because the light force is exceedingly small in this case, it would need to be exerted continuously for years for the spacecraft to reach high speed.
Another type of force arises when light has an intensity gradient. One application of this light force is an “optical tweezer” that is used to manipulate microscopic objects. Here again, the force is exceedingly small.
In this artist's conception of the Nebraska experiment, the white orbs represent two laser pulses, with plasma waves in their wakes. The wavers interfere with one another after the laser pulses cross, and electrons ride the wake field waves to higher energy.
In this artist's conception of the Nebraska experiment, the white orbs represent two laser pulses, with plasma waves in their wakes. The waves interfere with one another after the laser pulses cross, and electrons ride the wake field waves to higher energy.
In the Nebraska experiment, the laser pulses were focused in plasma. When electrons in the plasma were expelled from the paths of the light pulses by their gradient forces, plasma waves were driven in the wakes of the pulses, and electrons were allowed to catch the wakefield waves, which further accelerated the electrons to ultra-relativistic energy. The new application of intense light provides a means to control the initial phase of wakefield acceleration and improve the performance of a new generation of compact electron accelerators, which are expected to pave the way for a range of applications that were previously impractical because of the enormous size of conventional accelerators.
The experimental research was conducted by students and scientists at Nebraska, with senior research associate Grigoroy Golovin serving as lead author on the paper reporting the new result. Funding was provided by the National Science Foundation.
Suggested Items
Maxar Awarded Contract by NGA to Deliver Ai-Powered Object Detection Services
07/01/2025 | MaxarMaxar Intelligence, the leading provider of secure, precise geospatial insights, announced that it was awarded Delivery Order 01 under the Luno A program by the National Geospatial-Intelligence Agency (NGA).
PC AIB Shipments Follow Seasonality, Show Nominal Increase for Q4’24
06/06/2025 | JPRAccording to a new research report from the analyst firm Jon Peddie Research, the growth of the global PC-based graphics add-in board market reached 9.2 million units in Q1'25 and desktop PC CPUs shipments decreased to 17.8 million units.
Moving Forward With Confidence: SMT007 Magazine June 2025
06/02/2025 | I-Connect007 Editorial TeamAre you as prepared to close a sale as you could be? IPC’s monthly EMS reports showed that EMS revenue increased in March and April. With a book-to-bill ratio of 1.41, things are moving fast. That said, EMS shipments in April were down 1.4%, and bookings in April decreased by 10% year over year. In the June 2025 issue of SMT007 Magazine, we discuss best practices to keep your business thriving.
North American PCB Industry Shipments Down 6.8% in April
05/27/2025 | IPCIPC announced the April 2025 findings from its North American Printed Circuit Board (PCB) Statistical Program. The book-to-bill ratio stands at 1.21.
Qualcomm, Xiaomi Expand Collaboration with Multi-Year Agreement
05/23/2025 | Qualcomm Technologies, Inc.Qualcomm Technologies, Inc. and Xiaomi Corporation are celebrating 15 years of collaboration and have executed a multi-year agreement.