New Half-Light Half-Matter Particles May Hold the Key to a Computing Revolution
October 12, 2018 | University of ExeterEstimated reading time: 2 minutes

Scientists have discovered new particles that could lie at the heart of a future technological revolution based on photonic circuitry, leading to superfast, light-based computing. Current computing technology is based on electronics, where electrons are used to encode and transport information.
Due to some fundamental limitations, such as energy-loss through resistive heating, it is expected that electrons will eventually need to be replaced by photons, leading to futuristic light-based computers that are much faster and more efficient than current electronic ones.
Physicists at the University of Exeter have taken an important step towards this goal, as they have discovered new half-light half-matter particles that inherit some of the remarkable features of graphene, the so-called “wonder material”.
This discovery opens the door for the development of photonic circuitry using these alternative particles, known as ‘massless Dirac polaritons’, to transport information rather than electrons.
Dirac polaritons emerge in honeycomb metasurfaces, which are ultra-thin materials that are engineered to have structure on the nanoscale, much smaller than the wavelength of light.
A unique feature of Dirac particles is that they mimic relativistic particles with no mass, allowing them to travel very efficiently. This fact makes graphene one of the most conductive materials known to man.
However, despite their extraordinary properties, it is very difficult to control them. For example, in graphene it is impossible to switch on/off electrical currents using simple electrical potential, thus hindering the potential implementation of graphene in electronic devices.
This fundamental drawback - the lack of tunability - has been successfully overcome in a unique way by the physicists at the University of Exeter.
Charlie-Ray Mann, the lead author of the paper published in Nature Communications, explains: "For graphene, one usually has to modify the honeycomb lattice to change its properties, for example by straining the honeycomb lattice which is extremely challenging to do controllably.”
“The key difference here is that the Dirac polaritons are hybrid particles, a mixture of light and matter components. It is this hybrid nature that presents us with a unique way to tune their fundamental properties, by manipulating only their light-component, something that is impossible to do in graphene".
The researchers show that by embedding the honeycomb metasurface between two reflecting mirrors and changing the distance between them, one can tune the fundamental properties of the Dirac polaritons in a simple, controllable and reversible way.
"Our work has crucial implications for the research fields of photonics and of Dirac particles", adds Dr Eros Mariani, principal investigator on the study.
"We have shown the ability to slow down or even stop the Dirac particles, and modify their internal structure, their “chirality” in technical terms, which is impossible to do in graphene itself”
"The achievements of our work will constitute a key step along the photonic circuitry revolution".
Suggested Items
Baker Hughes' Waygate Unveils Nanotom HR for Advanced Inspection
05/06/2025 | Baker HughesWaygate Technologies, a Baker Hughes business and global leader in nondestructive testing (NDT) solutions for industrial inspection, unveiled its new extremely high-resolution computed tomography (CT) system, Phoenix Nanotom® HR (High Resolution) at the Control 2025 show in Stuttgart, Germany.
Global Semiconductor Sales Increase 18.8% in Q1 2025 Compared to Q1 2024; March 2025 Sales up 1.8% MoM
05/06/2025 | SIAThe Semiconductor Industry Association (SIA) announced global semiconductor sales were $167.7 billion for the first quarter of 2025, an increase of 18.8% compared to the first quarter of 2024 but 2.8% less than the fourth quarter of 2024.
North American PCB Industry Shipments Down 3.1% in March
04/28/2025 | IPCIPC announced the March 2025 findings from its North American Printed Circuit Board (PCB) Statistical Program. The book-to-bill ratio stands at 1.24.
Global Semiconductor Sales Increase 17.1% Year-to-Year in February
04/07/2025 | SEMIThe Semiconductor Industry Association (SIA) announced global semiconductor sales were $54.9 billion during the month of February 2025, an increase of 17.1% compared to the February 2024 total of $46.9 billion and 2.9% less than the January 2025 total of $56.5 billion.
TT Electronics Celebrates 35 Years of Dedication with Rhys Moseley
04/04/2025 | TT ElectronicsAt TT Electronics, the commitment to people as the cornerstone of success is showcased through the remarkable achievements of its employees.