-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
First 2D Material Performs as Both Topological Insulator and Superconductor
November 1, 2018 | MITEstimated reading time: 6 minutes

A transistor based on the 2-D material tungsten ditelluride (WTe2) sandwiched between boron nitride can switch between two different electronic states — one that conducts current only along its edges, making it a topological insulator, and one that conducts current with no resistance, making it a superconductor — researchers at MIT and colleagues from four other institutions have demonstrated.
Image Caption: In two-dimensional tungsten ditelluride, two different states of matter — topological insulator and superconductor — can be chosen at will, MIT researchers discovered. Graphic: Sanfeng Wu
Using four-probe measurements, a common quantum electronic transport technique to measure the electronic behavior of materials, the researchers plotted the current carrying capacity and resistance characteristics of the two-dimensional tungsten ditelluride transistor and confirmed their findings across a range of applied voltages and external magnetic fields at extremely low temperatures.
“This is the first time that the exact same material can be tuned either to a topological insulator or to a superconductor,” says Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT. “We can do this by regular electric field effect using regular, standard dielectrics, so basically the same type of technology you use in standard semiconductor electronics.”
New Class of Materials
“This is the first of a new class of materials — topological insulators that can be tuned electrically into superconductors — which opens many possibilities which before there were significant obstacles to realize,” Jarillo-Herrero says. “Having one material where you can do this seamlessly within the same material to transition between this topological insulator and superconductor is something which is potentially very attractive.”
Tungsten ditelluride, which is one of the transition metal dichalcogenide materials, is classified as a semimetal and conducts electricity like metals in bulk form. The new findings detail that in a single-layer crystal form, at temperatures from less than 1 kelvin to liquid nitrogen range (-320.4 degrees Fahrenheit), tungsten ditelluride hosts three distinct phases: topologically insulating, superconducting, and metallic. An applied voltage drives the transition between these phases, which vary with temperature and electron concentration. In superconducting materials, electrons flow without resistance generating no heat.
The new findings have been published online in the journal Science. Valla Fatemi PhD '18, who is now a postdoc at Yale, and postdoc Sanfeng Wu, who is a Pappalardo Fellow at MIT, are co-first authors of the paper with senior author Jarillo-Herrero. The co-authors are MIT graduate student Yuan Cao; Landry Bretheau PhD '18 of the École Polytechnique in France; Quinn D. Gibson of the University of Liverpool in the UK; Kenji Watanabe and Takashi Taniguchi of the National Institute for Materials Science in Japan; and Robert J. Cava, a professor of chemistry at Princeton University.
Like a Quantum Wire
The new work builds on a report earlier this year by the researchers demonstrating the quantum spin Hall effect (QSH), which is the signature physics phenomenon underlying two-dimensional topological insulators, in the same single layer tungsten ditelluride material. This edge current is governed by the spin of the electrons rather than by their charge, and electrons of opposite spin move in opposite directions. This topological property is always present in the material at cold temperatures.
This quantum spin Hall effect persisted up to a temperature of about 100 kelvins (-279.67 degrees F). “So it’s the highest temperature 2-D topological insulator so far,” says postdoc Sanfeng Wu, who also was a first author of the earlier paper. “It’s very important for an interesting quantum state like this to survive at high temperatures for use for applications.”
This behavior, in which the edges of tungsten ditelluride material act like a quantum wire, was predicted in 2014 in a theoretical paper by associate professor of physics Liang Fu and Ju Li, a professor of nuclear science and engineering and materials science and engineering. Materials with these qualities are sought for spintronic and quantum computing devices.
Although the topological insulating phenomenon was observed at up to 100 kelvins, the superconducting behavior in the new work occurred at a much lower temperature of about 1K.
This material has the advantage of entering the superconducting state with one of the lowest densities of electrons for any 2-D superconductor. “That means that that small carrier density that is needed to make it a superconductor is one that you can induce with normal dielectrics, with regular dielectrics, and using a small electric field,” Jarillo-Herrero explains.
Addressing the findings of topological insulating behavior in 2-D tungsten telluride in the first paper, and the findings of superconductivity in the second, Wu says, “These are twin papers, each of them is beautiful and put together their combination can be very powerful.” Wu suggests that the findings point the way for investigation of 2-D topological materials and could lead the way to a new material basis for topological quantum computers.
The tungsten ditelluride crystals were grown at Princeton University, while the boron nitride crystals were grown at the National Institute for Materials Science in Japan. The MIT team built the experimental devices, carried out the electronic transport measurements at ultra-cold temperatures, and analyzed the data at the Institute.
Page 1 of 2
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.