-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
First 2D Material Performs as Both Topological Insulator and Superconductor
November 1, 2018 | MITEstimated reading time: 6 minutes
Jarillo-Herrero notes that this discovery that monolayer tungsten ditelluride can be tuned into a superconductor using standard semiconductor nanofabrication and electric field effect techniques was simultaneously realized by a competing group of collaborators, including Professor David Cobden at the University of Washington and Associate Professor Joshua Folk at the University of British Columbia. (Their article — “Gate-induced superconductivity in a monolayer topological insulator” — is being published online at the same time in Science First Release.)
“It was done independently in both groups, but we both made the same discovery,” Jarillo-Herrero says. “It’s the best thing that can happen that your big discovery immediately gets reproduced. It gives extra confidence to the community that this is something that’s very real.”
Jarillo-Herrero was elected as a fellow of the American Physical Society earlier this year based on his seminal contributions to quantum electronic transport and optoelectronics in two-dimensional materials and devices.
Step Toward Quantum Computing
A particular area where this new capability may be useful is the realization of Majorana modes at the interface of topologically insulating and superconducting materials. First predicted by physicists in 1937, Majorana fermions can be thought of as electrons split into two parts, each of which behaves as an independent particle. These fermions have yet to be found as elementary particles in nature but can emerge in certain superconducting materials near absolute zero temperature.
“It is interesting by itself from a fundamental physics point of view, and in addition, it has prospects to be of interest for topological quantum computing, which is a special type of quantum computing,” Jarillo-Herrero says.
The uniqueness of Majorana modes lies in their exotic behavior when one swaps their positions, an operation that physicists call “braiding” because the time dependent traces of these swapping particles look like a braid. The braiding operations can’t change the quantum states of regular particles like electrons or photons, however braiding Majorana particles changes their quantum state completely. This unusual property, dubbed “non-Abelian statistics,” is the key to realizing topological quantum computers. A magnetic gap is also needed for pinning the Majorana mode at a location.
“This work is quite beautiful,” says Jason Alicea, professor of theoretical physics at Caltech, who was not involved in this research. “The basic ingredients necessary for engineering Majorana modes — superconductivity and gapping of edge states by magnetism — have now been separately demonstrated in WTe2.”
“Moreover, the observation of intrinsic superconductivity by gating is potentially a major boon for advanced applications of Majorana modes, e.g., braiding to demonstrate non-Abelian statistics. To this end, one can envision designing complex, dynamically tunable networks of superconducting quantum-spin-Hall edge states by electrostatic means.” Alicea says. “The possibilities are very exciting.”
The work was supported by the Gordon and Betty Moore Foundation and also was partly supported by the U.S. Department of Energy Basic Energy Sciences Office, the National Science Foundation, and the Elemental Strategy Initiative in Japan.
Page 2 of 2Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.