- 
                                
                        
                         - News
 -  Books
                        
Featured Books
- smt007 Magazine
 Latest Issues
Current Issue
                                                                                                        Spotlight on Mexico
Mexico isn’t just part of the electronics manufacturing conversation—it’s leading it. From growing investments to cross-border collaborations, Mexico is fast becoming the center of electronics in North America. This issue includes bilingual content, with all feature articles available in both English and Spanish.
                                                                                                        Production Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
                                                                                                        Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
- Articles
 Article Highlights
- Columns
 - Links
 - Media kit
 ||| MENU - smt007 Magazine
 
First 2D Material Performs as Both Topological Insulator and Superconductor
November 1, 2018 | MITEstimated reading time: 6 minutes
Jarillo-Herrero notes that this discovery that monolayer tungsten ditelluride can be tuned into a superconductor using standard semiconductor nanofabrication and electric field effect techniques was simultaneously realized by a competing group of collaborators, including Professor David Cobden at the University of Washington and Associate Professor Joshua Folk at the University of British Columbia. (Their article — “Gate-induced superconductivity in a monolayer topological insulator” — is being published online at the same time in Science First Release.)
“It was done independently in both groups, but we both made the same discovery,” Jarillo-Herrero says. “It’s the best thing that can happen that your big discovery immediately gets reproduced. It gives extra confidence to the community that this is something that’s very real.”
Jarillo-Herrero was elected as a fellow of the American Physical Society earlier this year based on his seminal contributions to quantum electronic transport and optoelectronics in two-dimensional materials and devices.
Step Toward Quantum Computing
A particular area where this new capability may be useful is the realization of Majorana modes at the interface of topologically insulating and superconducting materials. First predicted by physicists in 1937, Majorana fermions can be thought of as electrons split into two parts, each of which behaves as an independent particle. These fermions have yet to be found as elementary particles in nature but can emerge in certain superconducting materials near absolute zero temperature.
“It is interesting by itself from a fundamental physics point of view, and in addition, it has prospects to be of interest for topological quantum computing, which is a special type of quantum computing,” Jarillo-Herrero says.
The uniqueness of Majorana modes lies in their exotic behavior when one swaps their positions, an operation that physicists call “braiding” because the time dependent traces of these swapping particles look like a braid. The braiding operations can’t change the quantum states of regular particles like electrons or photons, however braiding Majorana particles changes their quantum state completely. This unusual property, dubbed “non-Abelian statistics,” is the key to realizing topological quantum computers. A magnetic gap is also needed for pinning the Majorana mode at a location.
“This work is quite beautiful,” says Jason Alicea, professor of theoretical physics at Caltech, who was not involved in this research. “The basic ingredients necessary for engineering Majorana modes — superconductivity and gapping of edge states by magnetism — have now been separately demonstrated in WTe2.”
“Moreover, the observation of intrinsic superconductivity by gating is potentially a major boon for advanced applications of Majorana modes, e.g., braiding to demonstrate non-Abelian statistics. To this end, one can envision designing complex, dynamically tunable networks of superconducting quantum-spin-Hall edge states by electrostatic means.” Alicea says. “The possibilities are very exciting.”
The work was supported by the Gordon and Betty Moore Foundation and also was partly supported by the U.S. Department of Energy Basic Energy Sciences Office, the National Science Foundation, and the Elemental Strategy Initiative in Japan.
Page 2 of 2Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Sealed for Survival: Potting Electronics for the Toughest Environments
10/29/2025 | Beth Massey, MacDermid Alpha Electronics SolutionsElectronics deployed in harsh conditions face relentless threats from vibration, impact, chemical contaminants, airborne pollutants, and moisture, conditions that can quickly lead to failure without robust protection. Potting, the process of encapsulating electronics in a protective polymer, is a widely used strategy to safeguard devices from both environmental and mechanical hazards.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
SMTAI 2025 Review: Reflecting on a Pragmatic and Forward-looking Industry
10/27/2025 | Marcy LaRont, I-Connect007Leaving the show floor on the final afternoon of SMTA International last week in Rosemont, Illinois, it was clear that the show remains a grounded, technically driven event that delivers a solid program, good networking, and an easy space to commune with industry colleagues and meet with customers.
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).