Butterfly Wings Inspire Invention That Opens Door to New Solar Technologies
November 6, 2018 | Australian National UniversityEstimated reading time: 2 minutes

Engineers have invented tiny structures inspired by butterfly wings that open the door to new solar cell technologies and other applications requiring precise manipulation of light.
The inspiration comes from the blue Morpho Didius butterfly, which has wings with tiny cone-shaped nanostructures that scatter light to create a striking blue iridescence, and could lead to other innovations such as stealth and architectural applications.
Lead researcher Dr Niraj Lal from the ANU Research School of Engineering said the team made similar structures at the nanoscale and applied the same principles in the butterfly wing phenomenon to finely control the direction of light in experiments.
"There's a whole bunch of potential new applications using our light-control technique, including next-generation solar cell, architectural and stealth technologies," said Dr Lal from the ANU Research School of Engineering.
He said scientists can greatly improve the efficiency of solar cells with effective light management.
"Techniques to finely control the scattering, reflection and absorption of different colours of light are being used in the next generation of very high-efficiency solar panels," he said.
"Being able to make light go exactly where you want it to go has proven to be tricky up until now."
Dr Lal said the aim was to absorb all of the blue, green and ultraviolet colours of sunlight in the perovskite layer of a solar cell, and all of the red, orange and yellow light in the silicon layer—known as a tandem solar cell with double-decker layers.
Researchers at the ANU surpassed silicon efficiency records with such a cell last month.
He said the technique could one day be used to make opaque objects transparent to certain colours, and vice versa, as part of new stealth applications.
"We were surprised by how well our tiny cone-shaped structures worked to direct different colours of light where we wanted them to go," Dr Lal said.
He said the technique could also be used in architecture to control how much light and heat passed through windows.
"Using our approach, a window could be designed to be transparent to some colours non-see through and matt textured for others - so there are very cool potential applications in architecture," Dr Lal said.
The technique was very scalable and did not require expensive technology, he said. "These intricate nanostructures grow and assemble themselves—it's not by precise control with a tiny laser or electrons," Dr Lal said.
The research paper is published in ACS Photonics, with co-authors Kevin Le, Andrew Thomson, Maureen Brauers, Tom White and Kylie Catchpole. Dr Lal was one of the ABC's Top 5 Scientists Under 40 last year and he recently appeared as a guest physicist on Todd Sampson's 'Life on the Line' TV series.
Suggested Items
IDC Increases its PC and Tablet Forecasts Despite Tariff Uncertainty
06/02/2025 | IDCAfter recording strong results in the first quarter of 2025, IDC is increasing its traditional PC forecast for 2025 — this comes despite the significant impact that US tariffs have had on its trading partners’ market sentiment.
IonQ Signs MoU with KISTI to Accelerate South Korea’s Role in the Global Quantum Race
06/02/2025 | IonQIonQ, a leading commercial quantum computing and networking company, today announced the signing of a memorandum of understanding (MoU) with the Korea Institute of Science and Technology Information (KISTI), a leading national science and technology research institute and supercomputing center.
Stephen Winchell Appointed DARPA Director
06/02/2025 | DARPAStephen Winchell was sworn in today as the 24th director of the Defense Advanced Research Projects Agency.
Hon Hai Research Institute Partners with Taiwan Academic Research Institute and KAUST to Participate in CLEO 2025
05/30/2025 | FoxconnThe research team of the Semiconductor Division of Hon Hai Research Institute, together with the research teams of National Taiwan University and King Abdullah University of Science and Technology in Saudi Arabia, has successfully made breakthroughs in multi-wavelength μ -LED technology to achieve high-speed visible light communication and optical interconnection between chips.
UNIST, SK On Strengthen Collaboration to Cultivate Battery Talent and Enhance R&D Capabilities
05/28/2025 | UNISTUNIST announced its plans to deepen collaboration with SK On to foster talent in the battery industry. This strategic partnership aims to attract outstanding researchers, broaden the foundation of research and development, and secure future competitive advantages.