-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current Issue
The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Substrates for Advanced PCB Technologies: What Will the Future Hold?
November 6, 2018 | Pete Starkey, I-Connect007Estimated reading time: 9 minutes
Developments in ultra-thin flexible integrated circuits were opening up opportunities for introducing intelligence and interactivity into everyday items, enabling smart packaging, labels, and objects. The proprietary PragmatIC technology utilised thin-film metal oxides on a polymer substrate with a total thickness of fewer than 10 microns at a fraction of the cost of equivalent silicon devices, and the capital cost of the manufacturing plant was far less than that for silicon semiconductors. Fujikora’s WABE hybrid die technology could mass-produce multilayer polyimide PCBs embedded with background ICs and low-profile passive components through a roll-to-roll process. The thin flexible body of the WABE package favoured applications in medical and wearable electronics.
Tremlett concluded his presentation with a brief overview of “substrateless” circuits and moulded interconnect devices with automotive application examples where the circuit was created directly on an existing substrate, and in wearable applications where the circuit was deposited directly on to a piece of fabric.
Martin Wickham then introduced Jim Francey, sales manager Northern Europe for Optiprint and well-known for his expert knowledge on low-loss materials for microwave and RF applications, to discuss organic substrates for PCBs and the factors influencing substrate development and user selection criteria.
Francey began with a broad overview of the available classes of organic substrate: paper, polyester films, FR-4 epoxy, high-Tg epoxy, polyimide, and PTFE. Although paper-phenolic laminates had been used since the early 1960s, there was growing interest in the use of paper coated with biodegradable polyimide as a low-cost PCB substrate. Polyesters such as polyethylene terephthalate (PET) and polyethylene naphthenate (PEN) were well-established flexible-circuit substrates, especially in high-volume reel-to-reel applications, and were being used as substrates for emerging near-field communication (NFC) smart labels with printed memory and printed sensors.
FR-4 woven-glass-reinforced thermoset epoxy resin laminates and prepregs were the established substrates of choice for multilayer PCBs, and blends with resins such as bismaleimide triazine, cyanate ester, and polypropylene ethers had given improved electrical and mechanical properties. Lead-free assembly requirements had driven a transition from di-functional to multifunctional epoxy for improved temperature capability. The addition of thermally conductive inorganic fillers conferred thermal dissipation properties.
Woven-glass-reinforced thermoset polyimide laminates and prepregs had become the industry standard for applications where operating temperatures exceeded the capability of multifunctional epoxy. For many military and aerospace applications, non-reinforced polyimide film was used as the basis of flexible and rigid-flex circuits. Further, adhesiveless materials were increasingly used where reduced thickness, increased thermal robustness, and improved high-frequency electrical properties were required.
Woven-glass-reinforced and non-reinforced PTFE substrates were used predominantly in RF and microwave designs and increasingly in millimetre-wave applications. These materials combined a low dissipation factor with a stable dielectric constant through a wide frequency range. Volume markets were cellular base-station power amplifiers, base-station antennae, and increasingly in automotive radar antennae. Inorganic fillers could be used to modify dielectric constant and thermal conductivity. Woven-glass-reinforced laminates based on thermoset hydrocarbon resins with inorganic fillers were being widely used in microwave and high-speed digital applications, and new hydrocarbons were seen as cost-effective replacements for PTFE in the automotive safety electronics market. Non-reinforced liquid crystal polymer (LCP)—a thermoplastic with negligible water absorption—was increasing in popularity as a substrate in microwave and millimetre-wave applications. Cyclic olefin copolymer was a crystal-clear plastic frequently used in medical applications and in conjunction with additive technology.
Moving on from this comprehensive survey of established and emerging substrate materials, Francey discussed the topic of satisfying PCB transmission requirements in some depth, beginning with some comments on miniaturisation. Thin-core dielectrics gave the opportunity to reduce plated via diameter and increase packaging density. Adhesiveless polyimide flex substrates available in thicknesses down to 12.5 microns, and an ultra-light-weight glass fabric style—1017, only 15 microns—enabled the manufacture of 30-micron laminates and prepregs. Francey showed an example of a 6-layer sequentially laminated rigid-flex with 12-micron single-sided polyimide cores and 12-micron bond plies, and 50-micron stacked vias laser-drilled and copper-filled. Thin-core rigid organic substrates with low-expansion woven glass and copper-filled vias were increasingly being used as alternatives to ceramic substrates in semiconductor packaging.
Francey considered basic requirements for maintaining high-speed signal integrity: low-loss polymers with stable dielectric constant through a range of frequencies, low-profile copper foil, and spread-glass fabrics to minimise the effect of glass-weave skew. He also demonstrated the importance of good layer-to-layer registration in minimising signal losses.
Page 2 of 3
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.
Nolan’s Notes: Tariffs, Technologies, and Optimization
10/01/2025 | Nolan Johnson -- Column: Nolan's NotesLast month, SMT007 Magazine spotlighted India, and boy, did we pick a good time to do so. Tariff and trade news involving India was breaking like a storm surge. The U.S. tariffs shifted India from one of the most favorable trade agreements to the least favorable. Electronics continue to be exempt for the time being, but lest you think that we’re free and clear because we manufacture electronics, steel and aluminum are specifically called out at the 50% tariff levels.
MacDermid Alpha & Graphic PLC Lead UK’s First Horizontal Electroless Copper Installation
09/30/2025 | MacDermid Alpha & Graphic PLCMacDermid Alpha Electronics Solutions, a leading supplier of integrated materials and chemistries to the electronics industry, is proud to support Graphic PLC, a Somacis company, with the installation of the first horizontal electroless copper metallization process in the UK.
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
MacDermid Alpha Showcases Advanced Interconnect Solutions at PCIM Asia 2025
09/18/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronic Solutions, a global leader in materials for power electronics and semiconductor assembly, will showcase its latest interconnect innovations in electronic interconnect materials at PCIM Asia 2025, held from September 24 to 26 at the Shanghai New International Expo Centre, Booth N5-E30