-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
SMT Electrolytic Capacitor Solder Joint Criteria and Integrity Investigation
December 21, 2018 | David Hillman, Rockwell CollinsEstimated reading time: 10 minutes
Figure 5: Assembly showing SMT electrolytic capacitor locations.
Figure 6: Typical SMT electrolytic capacitors. (Photo courtesy of Conrad Dubilier)
Assembly
The test vehicles were assembled at the Rockwell Collins Coralville, IA production facility. The solder paste was Henkel MP-218 tin lead eutectic solder deposited with a 0.005 inch thick stencil. The components were placed using a Universal Advantis automated placement machine. The assemblies were reflowed in a Heller 1912EXL Reflow Oven. Assemblies were cleaned in the Electrovert Aquastorm 200 inline cleaner. The majority of the solder joint is obscured due to the package configuration, with only the outer end of the component lead being visible for optical inspection (Figure 8). The portions of the solder joints that were visually inspectable were considered non-compliant as they did not meet a 1T minimum side fillet height. The typical placement/spacing of the SMT electrolytic capacitors makes solder joint touch-up challenging and creates a potential opportunity for component or laminate damage.
Thermal Cycle Testing
The test vehicles were placed into a thermal chamber set for a temperature range of -55°C to 125°C. The ramp rate was set for 5°C–10°C per minute with 10-minute dwells at each temperature extreme. Figure 9 shows the thermal profile.
Figure 7: Typical SMT electrolytic capacitors. (Photo Courtesy of Panasonic).
After completing a total of 532 thermal cycles, the components were removed from the thermal cycle chamber for metallographic cross-sectional analysis.
Shear Testing
Prior to thermal cycle testing, a set of electrolytic capacitors were carefully removed from the assembled test vehicles for shear testing. This data set documented the typical as-soldered, not thermal cycled condition to provide a measurement of the strength of the solder joint wetting/geometry configuration. An Instron test system using a shear rate of 0.15 inches/minute was used for the test.
Figure 10 illustrates the test components/shear test setup. The measured mean peak load for the shear testing was 40.3 pounds with a standard deviation of 5.4 pounds (Figure 11). There are no industry acknowledged minimum shear force values, however, 30 pounds would be considered very adequate for solder joint integrity.
For comparison, the typical component pad peel strength is 6-12 pounds.
Figure 8: Optical view of solder joints after automated reflow soldering.
Optical examination of the failed solder joints after shear testing revealed minor solder joint voiding, good wetting/solder joint geometry and complete metallurgical attachment for both the solder joint/component lead interface and the solder joint/component pad interface (i.e. cohesive failure).
Figure 12 illustrate the typical failed solder joint interfaces resulting from the shear testing.
Metallographic Analysis
A number of the SMT electrolytic capacitors were removed from the test vehicle after the completion of the thermal cycle conditioning for metallographic analysis. Some very minor cracking was observed in the solder joint heel fillet region but there were no observed anomalies in the solder joint microstructure or cracking that would indicate degradation of the solder joint integrity due to thermal cycle conditioning (Figure 13).
It was noted that a “1T” solder joint heel fillet or side fillet was not achieved using the standard automated reflow soldering process. The solder joint heel fillet height was found to be in the 1/2T height range.
Figure 14 through Figure 16 illustrate the solder fillet heights achieved with the standard automated reflow soldering process.
Figure 14: Cross sectional toe view of SMT electrolytic capacitor illustrating ~ 63% T side fillet height.
Figure 15: Cross sectional toe view of SMT electrolytic capacitor illustrating ~ 54% T side fillet height.
Page 2 of 3
Suggested Items
See TopLine’s Next Gen Braided Solder Column Technology at SPACE TECH EXPO 2025
05/28/2025 | TopLineAerospace and Defense applications in demanding environments have a solution now in TopLine’s Braided Solder Columns, which can withstand the rigors of deep space cold and cryogenic environments.
INEMI Interim Report: Interconnection Modeling and Simulation Results for Low-Temp Materials in First-Level Interconnect
05/30/2025 | iNEMIOne of the greatest challenges of integrating different types of silicon, memory, and other extended processing units (XPUs) in a single package is in attaching these various types of chips in a reliable way.
E-tronix Announces Upcoming Webinar with ELMOTEC: Optimizing Soldering Quality and Efficiency with Robotic Automation
05/30/2025 | E-tronixE-tronix, a Stromberg Company, is excited to host an informative webinar presented by Raphael Luchs, CEO of ELMOTEC, titled "Optimize Soldering Quality and Efficiency with Robotic Automation," taking place on Wednesday, June 4, 2025 at 12:00 PM CDT.
CE3S Launches EcoClaim Solutions to Simplify Recycling and Promote Sustainable Manufacturing
05/29/2025 | CE3SCumberland Electronics Strategic Supply Solutions (CE3S), your strategic sourcing, professional solutions and distribution partner, is proud to announce the official launch of EcoClaim™ Solutions, a comprehensive recycling program designed to make responsible disposal of materials easier, more efficient, and more accessible for manufacturers.
Indium to Feature Precision Gold-Based Die-Attach Preforms at IMS 2025
05/29/2025 | Indium CorporationIndium Corporation® will feature its high-reliability, gold-based precision die-attach preforms for critical laser and RF applications, as well as 5G communications, at the International Microwave Symposium, June 15-19, in San Francisco, CA.