Growing Bio-Inspired Shapes with Hundreds of Tiny Robots
December 31, 2018 | University of BristolEstimated reading time: 3 minutes

Hundreds of small robots can work in a team to create biology-inspired shapes—without an underlying master plan, purely based on local communication and movement. This is what researchers from Barcelona working with the Bristol Robotics Laboratory found when they introduced the biological principles of self-organisation to swarm robotics.
“We show that it is possible to apply nature’s concepts of self-organisation to human technology like robots,” says EMBL Barcelona group leader James Sharpe, co-author of the findings published 19 December in Science Robotics.
“That’s fascinating because technology is very brittle compared to the robustness we see in biology. If one component of a car engine breaks down, it usually results in a non-functional car. By contrast when one element in a biological system fails, for example if a cell dies unexpectedly, it does not compromise the whole system, and will usually be replaced by another cell later. If we could achieve the same self-organisation and self-repair in technology, we can enable it to become much more useful than it is now.”
Sharpe led the project—initiated at the Centre for Genomic Regulation (CRG)—together with Sabine Hauert from the University of Bristol’s Robotics Laboratory.
The only information that the team installed in the coin-sized robots were basic rules on how to interact with neighbours. They specifically programmed the robots in the swarm to act similarly to cells in a tissue. Those ’genetic’ rules mimic the system responsible for the Turing patterns we see in nature, like the arrangement of fingers on a hand or the spots on a leopard. In this way, the project brings together two of Alan Turing’s fascinations: computer science and pattern formation in biology.
The robots rely on infrared messaging to communicate with neighbours within a 10-centimetre range. This makes the robots like biological cells, as they too can only directly communicate with other cells physically close to them.
The swarm forms various shapes by relocating robots from areas with low morphogen concentration to areas with high morphogen concentration—called ‘Turing spots’—which leads to the growth of protrusions reaching out from the swarm.
“It’s beautiful to watch the swarm grow into shapes, it looks quite organic,” says Dr Hauert. “What’s fascinating is there is no master plan, these shapes emerge as a result of simple interactions between the robots. This is different from previous work where the shapes were often predefined.”
Working with Large Swarms
It is impossible to study swarm behaviour with just a couple of robots. That is why the team used at least 300 in most experiments, using a special setup which makes it easy to start and stop experiments and reprogram all the robots at once using light. Over 20 experiments with large swarms were done, with each experiment taking around 3.5 hours.
Furthermore, just like in biology, things often go wrong. Robots get stuck, or trail away from the swarm in the wrong direction. “That’s the kind of stuff that doesn’t happen in simulations, but only when you do experiments in real life”, says Ivica Slavkov, who shares first authorship of the paper with Daniel Carrillo-Zapata, also from the Bristol Robotics Lab.
All these details made the project challenging. The early part of the project was done in computer simulations, and it took the team about three years before the real robot swarm made its first shape. But the robots’ limitations also forced the team to devise clever, robust mechanisms to orchestrate the swarm patterning. By taking inspiration from shape formation in biology, the team was able to show that their robot shapes could adapt to damage, and self-repair. The large-scale shape formation of the swarm is far more reliable than each of the little robots, the whole is greater than the sum of the parts.
Potential for Real World Applications
While inspiration was taken from nature to grow the swarm shapes, the goal is ultimately to make large robot swarms for real-world applications. Imagine hundreds or thousands of tiny robots growing shapes to explore a disaster environment after an earthquake or fire or sculpting themselves into a dynamic 3D structure such as a temporary bridge that could automatically adjust its size and shape to fit any building or terrain.
“Because we took inspiration from biological shape formation, which is known to be self-organised and robust to failure, such swarm could still keep working even some robots were damaged.” says Daniel Carrillo-Zapata. "There is still a long way to go however, before we see such swarms outside the laboratory."
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
The Shaughnessy Report: Winning the Signal Integrity Battle
09/09/2025 | Andy Shaughnessy -- Column: The Shaughnessy ReportWhen I first started covering this industry in 1999, signal integrity was the hip new thing in PCB design. Conference classes on signal integrity were packed to the walls, and an SI article was guaranteed to get a lot of reads.
Standard of Friendship: Debbie McDade and Symon Franklin Went From Classmates to Colleagues
08/27/2025 | Debbie McDade, Advanced Rework Technology Ltd.As a fairly new IPC Master Trainer, I nervously attended my first IPC committee meeting in 2002 in New Orleans—a 4,600-mile trip from my home in the UK—for the IPC-610 Task Group. With more than 250 members, it was the largest IPC committee at that time.
New Frontier Aerospace and Air Force Institute of Technology Sign CRADA to Advance Hypersonic VTOL Aircraft
08/05/2025 | PR NewswireNew Frontier Aerospace (NFA) is excited to announce a Collaborative Research and Development Agreement (CRADA) with the Air Force Institute of Technology (AFIT) aimed at advancing an innovative rocket-powered hypersonic Vertical Takeoff and Landing (VTOL) aircraft.
Insulectro Facilitates Fabricator Access to EMC Mass Lam Capabilities
07/30/2025 | InsulectroInsulectro, the largest distributor of materials used in the manufacturing of printed circuit boards and printed electronics, announces a new service - a system to help our customers to access EMC's well established mass lam offerings. Long a leader in mass lam manufacturing, EMC is the exclusive supplier in Insulectro's laminate and pre preg portfolio.
American Made Advocacy: A Growing Presence in Washington in Turbulent Times
07/29/2025 | Shane Whiteside -- Column: American Made AdvocacyLast month, PCBAA held its fourth annual meeting in Washington, D.C. It was our largest gathering to date and included speakers from the House and Senate, the Department of Commerce, and OEMs Lockheed Martin, RTX, and Northrop Grumman. We also spent a day on Capitol Hill educating lawmakers and their staff about the importance of a secure domestic microelectronics supply chain.