Using AI to Build Better Human-Machine Teams
March 31, 2019 | DARPAEstimated reading time: 2 minutes

The inability of artificial intelligence (AI) to represent and model human partners is the single biggest challenge preventing effective human-machine teaming today. Current AI agents are able to respond to commands and follow through on instructions that are within their training, but are unable to understand intentions, expectations, emotions, and other aspects of social intelligence that are inherent to their human counterparts. This lack of understanding stymies efforts to create safe, efficient, and productive human-machine collaboration.
“As humans, we are able to infer unobservable states, such as situational beliefs and goals, and use those to predict the subsequent actions, reactions, or needs of another individual,” said Dr. Joshua Elliott, a program manager in DARPA’s Information Innovation Office (I2O). “Machines need to be able to do the same if we expect them to collaborate with us in a useful and effective way or serve as trusted members of a team.”
Teaching machines social intelligence however is no small feat. Humans intuitively build mental models of the world around them that include approximations of the mental models of other humans – a skill called Theory of Mind (ToM). Humans use their ToM skill to infer the mental states of their teammates from observed actions and context, and are able to predict future actions based on those inferences. These models are built on each individual’s existing sets of experiences, observations, and beliefs. Within a team setting, humans build shared mental models by aligning around key aspects of their environment, team, and strategies. ToM and shared mental models are key elements of human social intelligence that work together to enable effective human collaboration.
DARPA’s Artificial Social Intelligence for Successful Teams (ASIST) program seeks to develop foundational AI theory and systems that demonstrate the basic machine social skills necessary to facilitate effective machine-human collaboration. ASIST aims to create AI agents that demonstrate a Machine ToM, as well as the ability to participate effectively in a team by observing and understanding their environment and human partners, developing useful context-aware actions, and executing those actions at appropriate times.
The agents developed under ASIST will need to operate across a number of scenarios, environments, and other variable circumstances, making the ability for them to evolve and adapt as needed critical. As such, ASIST will work to develop agents that can operate in increasingly complex environments, adapt to sudden change, and use observations to develop complex inferences and predictions.
During the first phase of the program, ASIST plans to conduct experiments with single human-machine interactions to see how well the agents can infer human goals and situational awareness, using those insights to then predict their teammate’s actions and provide useful recommended actions. As the program progresses, the complexity will increase with teams of up to 10 members interacting with the AI agents. During these experiments, ASIST will test the agents’ ability to understand the cognitive model of the team – not just that of a single human – and use that understanding to develop appropriate situationally relevant actions.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Secure Semiconductor Manufacturing Acquires Full SMT Line from Manncorp
09/11/2025 | ManncorpSecure Semiconductor Manufacturing, LLC (SSM), an American-owned company dedicated to producing secure printed wiring boards and advanced assembly solutions in the MidWest USA, today announced the acquisition of a complete surface mount technology (SMT) line from Manncorp.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
MS2 Technologies, LLC/P. Kay Focuses on Central America with First Installation in Honduras
08/24/2025 | P. Kay Metal, Inc.This year MS2 Technologies has turned their focused to the growing electronics market in Central America. With that focus came the adaptation of MS2 and the Akila System from a Honduras-based corporation with manufacturing plants in both Honduras and Mexico.
SEL: Revolutionizing PCB Production Through MES, Partnerships, and Vision
08/21/2025 | Barry Matties, I-Connect007Two years ago, we visited Schweitzer Engineering Laboratories (SEL) to better understand its new captive greenfield PCB facility. We recently returned, this time to discuss how this bold vision has transformed the industry. Barry Matties met with John Hendrickson, engineering director, and Jessi Hall, vice president of vertical integration, to discuss the transformative capabilities of Factory Core, SEL’s custom manufacturing execution system (MES), which allows for real-time monitoring of workflow and machine performance, and has led to impressive improvements in quality and cost efficiency.
Smart Automation: Pick-and-place Machines—What Matters in 2025
08/12/2025 | Josh Casper -- Column: Smart AutomationWhen people talk about placement technology, they often zero in on speed: How fast can a machine place components? What's the quoted components per hour (CPH)? How many nozzles are on the head? While these metrics matter, on most production floors, the fastest machine on paper isn’t always the most productive.