-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueDo You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
Technical Resources
Key industry organizations–all with knowledge sharing as a part of their mission–share their technical repositories in this issue of SMT007 Magazine. Where can you find information critical to your work? Odds are, right here.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Tips & Tricks: Wave Solder Bridging
April 3, 2019 | Jason Fullerton, MacDermid Alpha Electronics SolutionsEstimated reading time: 1 minute

Wave solder bridging is the most difficult defect to troubleshoot because it has a number of potential causes. The key is to understand the role of flux during wave contact—reducing the surface tension of the solder to reduce the tendency to bridge between pins as the board leaves the wave. Bridging occurs when the flux has been chemically depleted before exiting the wave. This can be a function of the flux and process.
With respect to flux, in general, fluxes with higher activity levels are more resistant to bridging. This means that no-clean fluxes can be more likely to result in bridging, especially with older formulations. Newer flux formulations are available that have higher levels of performance while still meeting the requirements of no-clean classification.
Regarding the process, the flux loading and total thermal input to the board are key factors. An inadequate amount of flux can result in flux exhaustion before wave exit. Excessively high thermal inputs can also lead to bridging with three factors to measure. Preheat temperature is the first, contact time on the wave is the second, and solder pot temperature is the third. The optimal values for each should be available on the data sheet for any flux, and they will be different for every flux formulation.
There are other reasons outside of flux and process that can lead to bridging. The design of masking pallets can cause bridging if there is inadequate clearance around the devices. The PCB layout can also cause bridging if rows of leads are unable to be processed through the wave in the proper orientation (orthogonally and not parallel to the wave). These factors may not be able to be overcome through process optimizations or flux selection.
Jason Fullerton is the customer technical support engineer at the Assembly Division of MacDermid Alpha Electronics Solutions.
Suggested Items
Real Time with... IPC APEX EXPO 2025: New Dispensing and Coating Solutions
04/03/2025 | Real Time with...IPC APEX EXPOMichael Hanke, Global Sales Officer at Rehm, discusses new dispensing and coating equipment developed in Germany. He emphasizes the significance of software integration with customer systems to tackle market challenges.
BEST Inc. Presents StencilQuik for Simplifying BGA Rework Challenges
04/02/2025 | BEST Inc.BEST Inc., a leader in electronic component rework services, training, and rework tools is thrilled to announce StencilQuik™ rework stencils. This innovative product is specifically designed for placing Ball Grid Arrays (BGAs) or Chip Scale Packages (CSPs) during the rework process.
Real Time with... IPC APEX EXPO 2025: Nordson's Expansion of Intelligent Technologies
04/02/2025 | Real Time with...IPC APEX EXPOJonathia Ang-Mueller gives an update on Nordson's latest selective soldering system which features a small footprint, offering cost savings and increased production capacity. Advanced software allows for pre-sales simulations, enhancing customer engagement.
Knocking Down the Bone Pile: Basics of Component Lead Tinning
04/02/2025 | Nash Bell -- Column: Knocking Down the Bone PileThe component lead tinning process serves several critical functions, including removing gold plating, mitigation of tin whiskers, reconditioning of component solderability issues, and alloy conversion from lead-free (Pb-free) to tin-lead or from tin-lead to lead-free for RoHS compliance. We will cover each of these topics in more detail in upcoming columns.
Real Time with... IPC APEX EXPO 2025: Innovations at Indium Corporation—A Look into the Future
04/02/2025 | Real Time with...IPC APEX EXPOIndium Corporation, led by CEO Ross Berntson, is making strides in automotive applications with innovative solder paste technologies. The company prioritizes sustainability and energy efficiency in manufacturing while developing its workforce through partnerships with local universities.