Scientists Create Fire-Retardant Sensors for Safety Gear
April 17, 2019 | UCLAEstimated reading time: 3 minutes

Imagine a device that could stand up to even the most intense fires so that it could automatically signal others when a firefighter is immobilized on the job.
UCLA researchers and colleagues at two other universities have designed the first fire-retardant, self-extinguishing motion sensor and power generator. The device, which is the size of a quarter, could be embedded in shoes or clothing worn by firefighters, oil drillers or other people whose work involves extreme temperatures or harsh environments.
The research, which was published in the journal Nano Energy, was led by Richard Kaner, UCLA’s Dr. Myung Ki Hong Endowed Chair in Materials Innovation and a member of the California NanoSystems Institute at UCLA.
The self-powered sensor is a type of triboelectric nanogenerator. Triboelectric charging generates energy from the exchange of electrons when one material rubs up against another — in this case, the device itself and the wearer’s clothing or skin, or the device and the ground. The phenomenon is the same as the one that creates an electric shock when you touch a doorknob after rubbing your feet on a carpet.
The device, which the scientists dubbed FRTENG (for “fire-retardant triboelectric nanogenerator”), can detect when wearers are in danger or disabled because it can sense the difference between walking, running, jumping and stillness.
“Different movements create electric signals with different voltages and currents,” said Maher El-Kady, an assistant researcher at UCLA and co-author of the study. “Those different currents allow us to identify whether and how someone is moving — so the device could be integrated into a firefighter’s shoes, for example, and send a help signal wirelessly in case of an emergency.”
Triboelectric nanogerators already exist, but because they use materials like flammable plastics and textiles, current models can’t withstand fire or extreme temperatures, said Kaner, who also is a distinguished professor of chemistry and biochemistry, and of materials science and engineering.
To overcome that obstacle, the new device is made from a carbon aerogel that the researchers invented. The aerogel is both extremely lightweight — 95 percent of its volume is air — and stable at high temperatures, which makes it ideal for use in a fire-retardant device.
“The carbon aerogel conducts electricity efficiently and contains materials that are environmentally friendly,” El-Kady said. “Because the aerogel is so light, the wearer wouldn’t even feel the device.”
To form the aerogel, the researchers mixed two chemicals, formaldehyde and resorcinol, with polyacrylonitrile fibers and graphene oxide sheets that were mere nanometers thick — a nanometer is equivalent to one-billionth of a meter, or about 1/75,000th the width of a human hair — to create a gel. The nanofibers and nanosheets provide support for the ultra-lightweight material.
The new device is made from a carbon aerogel that is both extremely lightweight and stable at high temperatures, making it ideal for extreme conditions.
They then dried the gel to remove the liquid content, and heated it in a small chamber filled with hydrogen, leaving behind a durable but lightweight carbon aerogel nanocomposite.
“Using triboelectric charging, the carbon aerogel functions as a motion sensor and a power generator,” said Abdelsalam Ahmed, the study’s first author, a visiting scholar at McMaster University. “Unlike traditional sensors that rely on batteries for their power, the new device can operate indefinitely without the need for any power sources.”
To test the device’s fire resistance, the scientists exposed it to a butane flame for 90 seconds. They found that it not only did not spread the fire, but that it was self-extinguishing. And, even at 200 degrees Celsius, the device’s structure was preserved and its electrical output remained stable. At that temperature, most conventional triboelectric devices lose performance or even catch on fire, Kaner said.
El-Kady said the new device could also be useful on space missions — to track astronauts’ vital signs or to generate emergency power, for example. Extreme temperatures often prevent the use of other electronic devices during space flight.
The study’s other co-authors are Mit Muni, a UCLA graduate student; Islam Hassan, Ayman Negm and Ponnambalam Ravi Selvaganapathy of McMaster University; and Amir Masoud Pourrahimi of the University of Chemistry and Technology, Prague.
The research was supported by Nanotech Energy, a company that produces graphene, graphene oxide and graphene super batteries and was spun off from UCLA research. Kaner is chair of the company’s scientific board and El-Kady is the company’s chief technology officer.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
The Big Picture: Our Big ‘Why’ in the Age of AI
06/25/2025 | Mehul Davé -- Column: The Big PictureWith advanced technology, Tesla, Google, Microsoft, and OpenAI can quickly transform life as we know it. Several notable artificial intelligence (AI) studies, including the 2024 McKinsey Global Survey on AI, have offered insights into AI’s adoption, impact, and trajectory. The McKinsey study revealed that AI adoption continues to grow, with 50% of respondents reporting using AI in at least one business area.