Smart Materials Just Got Smarter
May 2, 2019 | U.S. Army Research LaboratoryEstimated reading time: 2 minutes

How is it smart materials are getting smarter? That is what scientists are discovering.
Army and Naval scientists have demonstrated a new class of solid-state phase change material for thermal energy storage, with applications and immediate impact ranging from large-scale power generation to the suppression of thermal transients associated with high-energy laser directed energy applications.
Image Caption: Thermal energy storage figure of merit vs. transformation temperature for the r.t. Martensite and r.t. R-phase NiTi sample characterized herein (green stars), along with values for other solid-solid phase change materials and solid-liquid paraffin. The green band shows the potential range of FOM and and transformation temperature for NiTi-based alloys based on thermal conductivity, density and latent heat values from the literature. (U.S. Army graphic)
"In recent years, researchers and companies have attempted to develop smarter, more efficient and environmentally conscientious materials and energy systems," said Dr. Darin Sharar, principal investigator for the U.S. Army Combat Capabilities Development Command's Army Research Laboratory, the Army's corporate research laboratory also known as ARL. The manuscript he authored, "Shape memory alloys provide ultrahigh thermal energy storage figure of merit," was selected as April's featured article published in Applied Physics Letters.
With directed energy, next-generation systems provide unique thermal management challenges due to their high heat flux and short pulse duration, requiring thermal design with transient loads in mind, Sharar said. Architectures using phase change materials are quickly becoming the preferred thermal management solution because of their ability to absorb thermal energy with minimal temperature increase, ensuring the directed energy systems can operate within spec, Sharar explained. However, standard designs require engineering measures in the form of metallic fin structures to provide mechanical support, prevent liquid phase change materials leakage and enhance poor phase change materials thermal conductivity. Because of this, metallic fins account for ~1/2 to ~2/3 of the mass of state-of-the-art directed energy phase change materials heat exchangers, leaving as little as 1/3 for latent energy storage. This imposes significant design restrictions, hindering transition from the laboratory setting to real-world systems.
"The discovery of thermal energy storage via shape memory alloys provides an unprecedented two order of magnitude improvement in the cooling figure of merit, defined by the product of the material latent heat and thermal conductivity," Sharar said. "This opens a new paradigm of phase change material design, through which scientists can eliminate the need for heavy/large volume fin structures and fabricate thermal energy storage and heat transfer structures entirely out of metallic shape memory alloys."
He said this promises increased duty cycle for directed energy applications, along with significant size and weight savings, enabling more-capable, compact directed energy assets on smaller platforms.
The paper describing these seminal results was published by Applied Physics Letters, a highly-prestigious multi-disciplinary journal, as a featured article and was displayed prominently on the APL banner on April 12. The patent covering this concept received approval from ARL's Invention Evaluation Committee and a patent is being pursued. Sharar recently received funding to further-explore this research area, via an DIRA-ECI award.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.