-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Cavity Board SMT Assembly Challenges (Part 1)
June 26, 2019 | By Dudi Amir and Brett Grossman, Intel Corp.Estimated reading time: 10 minutes
Figure 6: TV cavity design with four copper layers removed.
Figure 7: CiC test vehicle PCB artwork.
Figure 7(a) illustrates the PCB bottom artwork layer. The cavity area as well as a BGA footprint located on the PCB bottom surface are visible from this perspective. Clearly, there is no information in the cavity when viewing only the PCB bottom, as the cavity is defined on layer 10 of the PCB. The PCB, having component pads and soldermask on multiple layers, introduces some complexity to the PCB fabrication and to some steps in the assembly process. These processes are accustomed to having component pads and soldermask defined on at most two layers. Determining a method to communicate this information to PCB fabricators, fixture fabricators, solder paste inspection tools, and other processes that are dependent on the PCB artwork is crucial to avoid additional cost and delays.
Figure 7(b) illustrates the BGA footprint in the cavity, which is located on the PCB layer 10. Including BGA footprints inside and outside of the cavity provided the opportunity to evaluate the SMT process capability for the device placed in the cavity relative to the same device placed on the PCB surface.
PCB Supplier Challenges
Fundamentally, the 4-6-4+ stackup can be built by a large number of potential HVM fabricators. Creating a cavity in the PCB reduces the number of potential HVM fabricators, but the capability is still readily available in high volume. Requiring that the cavity have both copper pads and soldermask in the bottom of it dramatically reduces the number of potential fabricators. In early 2017, 14 HVM PCB fabricators were contacted to assess their capability. Of the 14 fabricators contacted, four were able to demonstrate experience building boards with similar cavities. They were targeted to support the build. Of those four fabricators, three were ultimately chosen to build the TV.
Figure 8: Cavity with four metal layers removed.
As described previously, there were two cavity depths under consideration for the TV design. One removed three metal layers and resulted in a nominal cavity depth which was slightly less than needed. The second removed four metal layers and had a nominal depth that was sufficient.
As can be seen in Figure 8, removing four metal layers from the 4-6-4+ stackup would place the bottom of the cavity on the surface of the buried core layer. This would require all the BGA pads to be connected to a plated through hole (PTH) via. For some fabricators, this would require the PTH vias to be plugged and plated over, which was not feasible for their cavity manufacturing processes. For that reason, the TV design with three metal layers removed was pursued.
Cavity Measurements
Cavity Depth
Cavity depth was initially seen as critical if using a two-level 3-D stencil for applying solder paste. Ideally, the stencil and PCB cavity are designed for the same depth. However, the stencil itself will have some tolerance between the two levels, and the PCB will also have some tolerance to the cavity depth. In the extreme condition where the cavity is at its minimum depth while the stencil is at a maximum (or vice versa), the resultant stencil stand-off could affect paste printing either inside the cavity or on the surface, as illustrated in Figure 9.
Figure 9: Illustration of PCB and stencil tolerance impacting stencil stand-off
The designed cavity depth was 0.187 μm. On average, however, the measured cavity depths were much greater for all suppliers. Additionally, through measurements of the cavity depth, it was observed that the cavity could have a complex shape, which could also be fabricator dependent. These shapes are shown in Figure 10. The impact of this shape on SMT yield will be discussed in a later section.
Figure 10: Cavity shape comparison for three PCB suppliers (at room temperature).
Surface to Cavity Registration Tolerance
Figure 11: Approximate location of cavity registration measurement points and their associated labels.
Again, if using a 3-D stencil that applies solder paste to both the PCB surface and the cavity bottom in the same pass, the positional tolerance of features on the PCB surface and cavity would need to be well controlled. The X-Y position of four alignment fiducials, four BGA pads inside the cavity, and four BGA pads on the PCB surface were measured on several boards. Measurements for the same points were also extracted from the PCB computer aided design (CAD) database to serve as a reference for evaluating the difference between the cavity and surface locations. The approximate locations of these points in the cavity are shown in Figure 11.
Page 2 of 3
Suggested Items
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.
SolderKing Achieves the Prestigious King’s Award for Enterprise in International Trade
05/06/2025 | SolderKingSolderKing Assembly Materials Ltd, a leading British manufacturer of high-performance soldering materials and consumables, has been honoured with a King’s Award for Enterprise, one of the UK’s most respected business honours.
Knocking Down the Bone Pile: Gold Mitigation for Class 2 Electronics
05/07/2025 | Nash Bell -- Column: Knocking Down the Bone PileIn electronic assemblies, the integrity of connections between components is paramount for ensuring reliability and performance. Gold embrittlement and dissolution are two critical phenomena that can compromise this integrity. Gold embrittlement occurs when gold diffuses into solder joints or alloys, resulting in mechanical brittleness and an increased susceptibility to cracking. Conversely, gold dissolution involves the melting away of gold into solder or metal matrices, potentially altering the electrical and mechanical properties of the joint.
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.
BEST Inc. Reports Record Demand for EZReball BGA Reballing Process
05/01/2025 | BEST Inc.BEST Inc., a leader in electronic component services, is pleased to announce they are experiencing record demand for their EZReball™ BGA reballing process which greatly simplifies the reballing of ball grid array (BGA) and chip scale package (CSP) devices.