-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueMoving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Robot Arm Tastes With Engineered Bacteria
June 28, 2019 | UC DavisEstimated reading time: 2 minutes

A robotic gripping arm that uses engineered bacteria to “taste” for a specific chemical has been developed by engineers at the University of California, Davis, and Carnegie Mellon University. The gripper is a proof-of-concept for biologically-based soft robotics.
“Our long-term vision is about building a synthetic microbiota for soft robots that can help with repair, energy generation or biosensing of the environment,” said Cheemeng Tan, assistant professor of biomedical engineering at UC Davis.
Soft robotics uses lightweight, flexible and soft materials to create machines that match the versatility of living things, and soft robot designs often draw inspiration form nature. Adding actual living cells to soft robots brings scientists another step closer to creating biological-mechanical hybrid machines.
“By combining our work in flexible electronics and robotic skin with synthetic biology, we are closer to future breakthroughs like soft biohybrid robots that can adapt their abilities to sense, feel and move in response to changes in their environmental conditions,” said Carmel Majidi, a co-author and associate professor of mechanical engineering at CMU.
Biosensing with Engineered Bacteria
The new device uses a biosensing module based on E. coli bacteria engineered to respond to the chemical IPTG by producing a fluorescent protein. The bacterial cells reside in wells with a flexible, porous membrane that allows chemicals to enter but keeps the cells inside. This biosensing module is built into the surface of a flexible gripper on a robotic arm, so the gripper can “taste” the environment through its fingers.
When IPTG crosses the membrane into the chamber, the cells fluoresce and electronic circuits inside the module detect the light. The electrical signal travels to the gripper’s control unit, which can decide whether to pick something up or release it.
As a test, the gripper was able to check a laboratory water bath for IPTG then decide whether or not to place an object in the bath.
So far, this biohybrid bot can only taste one thing and it’s difficult to design systems that can detect changing concentrations, Tan said. Another challenge is to maintain a stable population of microbes in, or on, a robot — comparable to the microbiome or ecosystem of bacteria and fungi that live in or on our own bodies and carry out many useful functions for us.
Biohybrid systems potentially offer more flexibility than conventional robotics, he said. Bacteria could be engineered for different functions on the robot: detecting chemicals, making polymers for repairs or generating energy, for example.
Suggested Items
Global PCB Connections: Rigid-flex and Flexible PCBs—The Backbone of Modern Electronics
05/20/2025 | Jerome Larez -- Column: Global PCB ConnectionsIn the past decade, flex and rigid-flex PCB technology has become the fastest-growing market segment. As an increasing number of PCB companies develop the capabilities to fabricate this technology, PCB designers are becoming comfortable incorporating these designs into their products.
Flexible PCB Market to Reach $61.75B by 2032, Driven by the Demand for Compact Electronics, Automotive and Medical Applications
05/16/2025 | Globe NewswireAccording to the SNS Insider, “The Flexible PCB Market was valued at USD 21.42 billion in 2023 and is expected to reach $61.75 billion by 2032, growing at a CAGR of 12.52% over the forecast period 2024-2032.”
CEE PCB to Exhibit at The Battery Show Europe 2025
05/14/2025 | CEE PCBTom Yang, CEO of CEE PCB, has announced that the company will exhibit at The Battery Show 2025, held from June 3-5 at the Messe Stuttgart in Stuttgart, Germany, in Booth F69 in Hall 7.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
05/02/2025 | Marcy LaRont, PCB007 MagazineIn our industry, this week’s must-read features include CEE’s Tom Yang and his perspective on having a global business amidst tariff talk and other challenges. Joe Fjelstadt talks to the “Flexperts,” Nick Koop of TTM and Mark Finstead of Flexible Circuit Technologies. Nolan Johnson interviews the McGucken Group about the importance of empathic leadership in BANI times. NCAB’s Ryan Miller writes about reliability and compliance for building PCBs for medical applications, and surprise, more news from Siemens.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.