-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current Issue
Spotlight on Mexico
Mexico isn’t just part of the electronics manufacturing conversation—it’s leading it. From growing investments to cross-border collaborations, Mexico is fast becoming the center of electronics in North America. This issue includes bilingual content, with all feature articles available in both English and Spanish.
Production Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Clean vs. No-clean Solder Process
July 3, 2019 | Russell Poppe, JJS ManufacturingEstimated reading time: 4 minutes
IPC, which was founded in 1957 as the Institute for Printed Circuits, is the trade association responsible for standardizing the assembly and production requirements of electronic equipment and assemblies.
Although IPC suggests clear guidelines, agreeing on the cleanliness (or otherwise) of a PCB assembly can often be a subjective and even contentious subject within the electronics manufacturing industry.
If you’ve chosen to outsource your assemblies, how do you decide what to specify to your EMS partner?
Defining "Clean" in PCB Assembly
Firstly, it’s probably worth defining what "clean" actually means. I think we're on safe ground to assume that lumps of unwanted debris or particulate matter—mysterious white residues or corrosion of any kind—are obviously not allowed.
Such things not only make the assembly look untidy, but they can also damage the functionality or long-term reliability of the product. Most of the time, when we’re talking about "cleanliness," we're referring to flux residues.
It is possible, to an extent, to measure cleanliness. For example, once an assembly has been cleaned, you can measure the residues in the cleaning process cycles to ensure the desired maximum has been achieved. However, for many—perhaps most—electronics applications, it’s often more about the cosmetic finish or other process considerations.
As you might imagine, when we start to talk about solders, fluxes, and cleaning agents, there is quite a bit of chemistry going on. But for now, let's focus on the practical issues surrounding whether an assembly should be cleaned or not.
To Clean or Not to Clean?
Why clean in the first place? Obviously, there are cosmetic considerations to keep in mind. If a no-clean flux is used during the SMT process, the assembly should look perfectly fine, as most of the flux gets burned off during the process.
However, if there is through-hole soldering afterwards—particularly hand soldering—it can show small areas of flux that make it all look a bit untidy due to the extra flux that is typically applied and the reduction in both heat and time associated with hand soldering compared to SMT ovens.
Perhaps most importantly, any residues must not interfere with visual inspection. If there is anything left obscuring solder joints, for example, then it must be cleaned off either by hand or by using one of the automated cleaning machines available.
If the product is to be tested using test probes, such as in-circuit test or flying probe, then flux can cause unreliability if the probes can’t access their test points on the PCB. This is usually fine if a pin-testable flux is used, but any excesses may need to be cleaned off.
If the assembly is to have a conformal coating, then all flux residues must be removed before application, so the PCBA will have to go through a cleaning process.
Are there any situations where you might choose not to clean? Well, yes. Some fluxes are designed to be cleaned off, but some aren't. Again, neatly side-stepping the chemistry here if the flux is designed to stay on the PCB then trying to clean it off generally isn't a good idea.
There is also an argument that the flux can provide a harmless protective layer over the solder joints and that removing it can expose the PCB finish to problems later.
Naturally, there are cost implications too. Cleaning is an additional process, so it's going to have a value attached to it. And there is also the impact on the environment with additional water or chemical supplies needed, which then need to be disposed of correctly.
It's also worth bearing in mind that certain types of components simply can't be cleaned due to the risk of the cleaning agent getting inside the body of the device and causing damage.
If cleaning is required, it can also overly complicate the build process—for example, having to fit components after the main clean, then individually cleaning those components, or by adding extra drying stages.
Again, any extra processes are going to mean additional cost.
Which Cleaning Method is Best?
What are your options when it comes to cleaning? Here are three:
- Localized cleaning: Can be achieved with a brush and cleaning agent such as IPA. However, care must be taken to ensure the residue is cleaned off and not simply spread thinly across the assembly.
- Automated solutions: There are some that use water (very similar to a dishwasher) or other cleaning agents, depending on the flux used. These cleaners tend to be relatively small in terms of physical footprint and the waste can usually be disposed of down existing on-site drains.
- Ultrasonic cleaners: These tend to be larger in size, cost more, and due to the chemicals used, will require specialist handling of the waste that is produced to ensure it is disposed of safely. There are, however, certain components that can't be cleaned using this equipment.
Many electronics manufacturing services (EMS) providers now standardize on a no-clean process. If you are unsure, or you are weighing up the pros and cons, then it’s always best to take advice from your EMS partner. They know what your requirements are—and they'll have the experience, equipment, skills, and processes in place to meet your demands.
Russell Poppe is the director of technology at JJS Manufacturing.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.