Enhancing Materials for Hi-Res Patterning to Advance Microelectronics
August 29, 2019 | Brookhaven National LaboratoryEstimated reading time: 6 minutes
Conventionally, the microelectronics industry has relied upon optical lithography, whose resolution is limited by the wavelength of light that the resist gets exposed to. However, EBL and other nanolithography techniques such as extreme ultraviolet lithography (EUVL) can push this limit because of the very small wavelength of electrons and high-energy ultraviolet light. The main difference between the two techniques is the exposure process.
“In EBL, you need to write all of the area you need to expose line by line, kind of like making a sketch with a pencil,” said Tiwale. “By contrast, in EUVL, you can expose the whole area in one shot, akin to taking a photograph. From this point of view, EBL is great for research purposes, and EUVL is better suited for high-volume manufacturing. We believe that the approach we demonstrated for EBL can be directly applied to EUVL, which companies including Samsung have recently started using to develop manufacturing processes for their 7 nm technology node.”
In this study, the scientists used an atomic layer deposition (ALD) system—a standard piece of nanofabrication equipment for depositing ultrathin films on surfaces—to combine PMMA and aluminum oxide. After placing a substrate coated with a thin film of PMMA into the ALD reaction chamber, they introduced a vapor of an aluminum precursor that diffused through tiny molecular pores inside the PMMA matrix to bind with the chemical species inside the polymer chains. Then, they introduced another precursor (such as water) that reacted with the first precursor to form aluminum oxide inside the PMMA matrix. These steps together constitute one processing cycle.
A schematic showing the process of creating the hybrid organic-inorganic resist through infiltration synthesis, patterning the resist via electron-beam lithography, and etching the pattern into silicon by bombarding the silicon surface with ions of sulfur hexafluoride (SF6).
The team then performed EBL with hybrid resists that had up to eight processing cycles. To characterize the contrast of the resists under different electron doses, the scientists measured the change in resist thickness within the exposed areas. Surface height maps generated with an atomic force microscope (a microscope with an atomically sharp tip for tracking the topography of a surface) and optical measurements obtained through ellipsometry (a technique for determining film thickness based on the change in the polarization of light reflected from a surface) revealed that the thickness changes gradually with a low number of processing cycles but rapidly with additional cycles—i.e., a higher aluminum oxide content.
“The contrast refers to how fast the resist changes after being exposed to the electron beam,” explained Chang-Yong Nam, a materials scientist in the CFN Electronic Nanomaterials Group, who supervised the project and conceived the idea in collaboration with Jiyoung Kim, a professor in the Department of Materials Science and Engineering at the University of Texas at Dallas. “The abrupt change in the height of the exposed regions suggests an increase in the resist contrast for higher numbers of infiltration cycles—almost six times higher than that of the original PMMA resist.”
The scientists also used the hybrid resists to pattern periodic straight lines and “elbows” (intersecting lines) in silicon substrates, and compared the etch rate of the resists with substrates.
Left: A scanning electron microscope (SEM) image of silicon elbow-shaped nanopatterns with different feature sizes (linewidths). Right: A high-magnification SEM image of high-resolution, high-aspect-ratio silicon nanostructures patterned at a pitch resolution (linewidth plus spacewidth, or space between lines) of 500 nm.
“You want silicon to be etched faster than the resist; otherwise the resist starts to degrade,” said Nam. “We found that the etch selectivity of our hybrid resist is higher than that of costly proprietary resists (e.g., ZEP) and techniques that use an intermediate “hard” mask layer such as silicon dioxide to prevent pattern degradation, but which require additional processing steps.”
Page 2 of 3
Suggested Items
Micron Announces Business Unit Reorganization to Capitalize on AI Growth Across All Market Segments
04/23/2025 | MicronMicron Technology, Inc., a leader in innovative memory and storage solutions, announced a market segment-based reorganization of its business units to capitalize on the transformative growth driven by AI, from data centers to edge devices.
Connected Commercial Drone Market to Reach $37.3 Billion Worldwide by 2029
04/04/2025 | Berg InsightBerg Insight, a leading IoT market research provider, today released a new report covering connected commercial drones used for industrial and governmental purposes.
Boulder Scientific Company Completes Investments to serve Polyolefins, Electronics, Aerospace and Defense Sectors
03/14/2025 | PRNewswireBoulder Scientific Company (BSC) announces completion of several investments at its Mead and Longmont, Colorado manufacturing facilities to support customers in the polyolefins, electronics, aerospace and defense sectors.
Transition Automation to Showcase Expanding Line of Permalex Squeegee Products at IPC APEX EXPO
03/07/2025 | Transition AutomationTransition Automation, Inc. (TA) is exhibiting a full product range of Permalex Edge Metal Squeegees and Holder systems at this year’s IPC APEX EXPO
Strategic Materials Conference 2025 to Highlight the New Era of Materials Innovation
02/12/2025 | SEMIWith advanced materials as a critical enabler of semiconductor growth applications, the Strategic Materials Conference (SMC) 2025 will gather top executives and technology leaders from the semiconductor manufacturing industry for exclusive insights into the latest advancements in materials innovation.