-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Decoupling Capacitors’ Impact on Power and Signal Integrity
September 3, 2019 | Chang Fei Yee, Keysight TechnologiesEstimated reading time: 1 minute
This article will discuss the effect of decoupling capacitors upon a PCB’s power and signal integrity. The study was performed with post-layout co-simulation of power and signal integrity to analyze power distribution network impedance, simultaneous switching noise, and eye diagrams.
Introduction
It is crucial for hardware designers to identify the resonant frequency of each element (e.g., bypass/decoupling capacitor, planar capacitance, and interconnect inductance) of the power distribution network (PDN) on a PCB and its impact on power integrity. A PCB with poor power integrity—such as a higher-than-targeted PDN impedance across the wideband range—results in simultaneous switching noise (SSN) and a shrunken eye diagram of the signal transmitted by the IC that draws power from the PDN. This article demonstrates the post-layout co-simulation of power and signal integrity using Mentor HyperLynx to analyze the impact of decoupling capacitors upon PDN impedance, SSN, and eye diagrams.
Analysis and Results
A PCB containing a system-on-a-chip (SoC) with DDR4 memory interface is laid out. In Figure 1a, the PDN named 1.2V on layer 4 supplies power to a memory interface that consists of one memory IC highlighted in blue. Meanwhile, the ground or reference plane, highlighted in green, is laid out on layer 5. The memory IC has 13 BGA power pins. The footprint of the 0.22-uF decoupling capacitor (highlighted in brown) in a 0201 package dimension is placed across each of the power pins and the ground. Additionally, the footprint of bypass capacitors, 10 uF and a 1 uF respectively (highlighted in brown as well), is placed across the 1.2V power net and ground. The eight data signals of this memory interface are shown in Figure 1b.
To view the rest of this article, which appeared in the August 2019 issue of Design007 Magazine, click here.
Suggested Items
iNEMI HDI Socket Warpage Prediction and Characterization Webinar
11/15/2024 | iNEMIHigh-density interconnect (HDI) sockets, primarily designed for CPUs and GPUs, are shifting toward larger form factors as the number of interconnect pins increases.
Siemens Strengthens Leadership in Industrial Software and AI with Acquisition of Altair Engineering
10/31/2024 | SiemensSiemens has signed an agreement to acquire Altair Engineering Inc., a leading provider of software in the industrial simulation and analysis market.
Duality AI Contracts with NASA JPL for Phase II of DARPA RACER Program
09/13/2024 | BUSINESS WIREDuality AI, the company behind Falcon, a digital twin simulation platform, today announced an agreement with NASA’s Jet Propulsion Laboratory (NASA JPL) in Pasadena to continue its work on Defense Advanced Research Projects Agency’s (DARPA’s) Robotic Autonomy in Complex Environments with Resiliency program (RACER).
Electronic Design Automation Market Valuation is Poised to Reach $35.3 Billion By 2032
08/08/2024 | Globe NewswireThe global electronic design automation market is projected to hit the market valuation of US$35.3 billion by 2032 from $15.8 billion in 2023 and at a CAGR of 9.75% during the forecast period 2024–2032.
CACI Awarded $319 Million Task Order to Provide Intelligence Systems Expertise to the U.S. Army
08/05/2024 | CAC, Inc.CACI International Inc announced that it has been awarded a five-year task order valued at up to $319 million to provide intelligence systems expertise to the U.S. Army, Communications-Electronics Command (CECOM), Software Engineering Center (SEC), Electronic Warfare and Sensors Directorate (IEWSD), Army Reprogramming Analysis Team-Program Office (ARAT-PO).