-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueWhat's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
Moving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
eSMART Factory Conference 2019, Day 1
September 2, 2019 | Happy Holden, I-Connect007Estimated reading time: 11 minutes

I had the pleasure of attending the eSMART Factory Conference in June in Dearborn, Michigan. This is the second annual conference on the smart factory. SMTA described it as "A technical conference with a focus on electronics manufacturing from software systems/processes to augmented reality and smart inspection." It was held at the rustic Dearborn Inn across the street from the Henry Ford Museum/Village and Ford Development Center.
Trevor Galbraith, the conference chair, opened the conference and introduced the keynote speaker, Irene Petrick, Ph.D. Her keynote was titled, "Building an AI Ready Culture."
Irene Petrick is the director of Intel’s industrial innovations. Her keynote highlighted the overview of the elements of the intelligent factory, including:
- Software-defined industrial equipment and collaborative machines
- Self-organized, flexible production flow
- Self-aware production systems
- Human in the loop-enabled connected worker
- Real-time and reliable computer and connectivity
- Embedded equipment-to-equipment (E2E) security
In her talk, Petrick stated that AI has been a long time coming and may not be ready for everyone yet. But the technology underpinnings for AI are part of the strategic fit of a modern corporation and fit the competitive strategies and architectures for the future. As seen in Figure 1, the smart factory has already started. The underpinnings are currently in place, such as:
- Data collection
- Data aggregation and actions
- Data scoring, analytics, and model updates
- Business intelligence and results sharing
- Feedback to update models and achieve corrective actions
Figure 1: Opportunities for the eSmart Factory involve data collection analytics and resulting corrective actions (Source: Intel Presentation).
AI's contribution to data collection will be hindsight, insight, foresight, forecast, and act/adapt. Further, machine learning is one of the big opportunities for AI progression. The journey from unconnected machines to smart, connected machines leads to intelligent factories. In traditional machine learning, the output is known and has the least workload requirements; meanwhile, with advanced machine learning, the output is unknown and has the highest workload requirements.
Petrick shared that Intel’s own journey started in the ‘80s with wafer fabrication (hands-on) through the '90s until today’s lights-out wafer fabrication (no-hands). Intel conducted extensive interviews with industry professionals (411 participants and over 93 hours of interviews) to discover the stages the industry is today for digital usage [1]. The results included:
- Low usage (25%), medium usage (46%), and high usage (29%)
- The participants had multiple facilities in multiple countries (43%), changeovers or setups very frequent (73%), used no automation or control systems (19%), and work or support predominately discreet manufacturing processes (68%)
- Industries participating included petrochemical (27%), metal fabrication (29%), electrical equipment and components (17%), food and beverage (9%), wood and paper products (7%), and transportation (6%)
- All participants wanted the future intelligent factory
As important as machines are, automation and the smart factory is not going to replace all workers. AI must facilitate the coevolution of workers and operations. It will influence decision-makers and influencers at all levels. Foremost, it will address skill gaps and provide an understanding of gaps. It is the leaders and hardcore doers that will drive transformational changes.
In conclusion, Petrick emphasized leadership and how it’s all about data and trust. She advised the audience to think big, start small, be holistic, and be the partner of choice, which will be a competitive advantage.
The second presentation was by Michael Ford of Aegis Corporation on “How IPC Standards Are Pivotal for Industry 4.0 Achievement.” He provided a summary and report on how IPC-2581 and IPC-CFX (Connected Factory Exchange-2591) together are enabling the smart factory. Ford is chairman of the IPC-1782 Component Traceability Committee and has played a significant role in bringing CFX into fruition. CFX is the only free, open-source, consensus-based Industry 4.0 standard on the market for electronics assembly.
CFX was conceived and implemented because of numerous “standardless” interfaces being created all over the globe for electronics assembly. The dilemma that OEMs faced was a collection of different protocols that would require massive re-engineering to have a coherent operating system. Many were omnidirectional and incompatible, moving data from point to point but not achieving the real goal of Industry 4.0, which is improved productivity, profits, and quality. Thus, an IPC committee was formed to create a consistent, open solution that everyone could use. In a very short time, IPC-2591 was created with over 300 parties participating from over 100 companies around the world to produce a digital manufacturing standard suitable for “plug-and-play” connectivity. No licensing, contracts, or dependencies are required.
Page 1 of 3
Suggested Items
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Hands-On Demos Now Available for Apollo Seiko’s EF and AF Selective Soldering Lines
06/30/2025 | Apollo SeikoApollo Seiko, a leading innovator in soldering technology, is excited to spotlight its expanded lineup of EF and AF Series Selective Soldering Systems, now available for live demonstrations in its newly dedicated demo room.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Fresh PCB Concepts: Assembly Challenges with Micro Components and Standard Solder Mask Practices
06/26/2025 | Team NCAB -- Column: Fresh PCB ConceptsMicro components have redefined what is possible in PCB design. With package sizes like 01005 and 0201 becoming more common in high-density layouts, designers are now expected to pack more performance into smaller spaces than ever before. While these advancements support miniaturization and functionality, they introduce new assembly challenges, particularly with traditional solder mask and legend application processes.
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.