-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Advances in Medical Diagnostics Using LoC and LoPCB Technologies
March 31, 2020 | Pete Starkey and Happy Holden, I-Connect007Estimated reading time: 14 minutes
LoC Materials
Over the years, several materials have been developed for use with LoC. It started in the late 1990s with silicon, as the microelectronics industry developed various methods of micromachining silicon (MEMS) for accelerometers for airbag sensors. From silicon wafers, the materials branched out to glass and then polymers. The most recent interest has been in PCBs and the use of various paper materials.
Silicon and glass have several advantages for fabricating an LoC, while being the most expensive. Polymers and especially PCBs are a new choice because of various materials available and the integration of electronics and various printing technologies. While paper is coming into focus for research, its use is only just beginning. Table 1 lists several characteristics of each of these materials.
Table 1: Base materials for LoC formations.
1. Silicon-based
Silicon started the LoC point-of-care (PoC) diagnostic uses. Figure 6 shows one of the first on the market—the Agilent 2100 Bioanalyzer System—for DNA, RNA, serum protein, and infectious disease analysis.
Figure 6: Agilent Technology has been involved in the life sciences since 1995. Their “nanolab chips” are used to analyze DNA, RNA, SARS, and other infectious disease proteins [2].
2. Glass-based
Glass is a lower cost material if electrical components and circuitry are not required. Glass can be fabricated into microchannels and deposited with many substances such as gels and coating. The glass device seen in Figure 7 is an Agilent 3100 Bioanalyzer Automated LC/MS that comes in numerous forms to separate chemicals and biological samples into microspray streams for use with liquid chromatography/mass spectrometry (LC/MS).
3. Polymer/PCB-based
Many polymers are also optically transparent and can be integrated into systems that use optical detection techniques such as fluorescence, UV/Vis absorbance, or Raman method. Moreover, many polymers are biologically compatible, chemically inert to solvents, and electrical insulating for applications where strong electrical voltages are necessary, such as electrophoretic separation and the surface chemistry of polymers. This can also be modified for specific applications. The most common polymers used in bio-MEMS include PMMA, PDMS, OSTEmer, and SU-8.
So, what could be achieved using PCB technology? Of recent years a lab-on-printed circuit board (LoPCB) approach has been suggested. The PCB industry is mature, well-established worldwide, and has standardized fabrication processes, materials, and production equipment currently dedicated to electronics applications, but with the potential to become a natural partner for LoC development and the scope to be straightforwardly up-scaled.
Enter Dr. Despina Moschou, a researcher at the Centre for Advanced Sensor Technologies, Department of Electronic and Electrical Engineering at the University of Bath in the U.K. Dr. Moschou is a frequent speaker at printed circuit events like AltiumLive [1], EIPC Conferences, and the ICT Conferences. Fortunately, for us, she has taken the time to prepare summaries of her, and the many others in this field, work on LoC and LoPCB µTAS approaches.
Early experimentation was focused on bio-electrodes for PCBs and on the microfluidics compatible with PCB fabrication. Figure 8 shows a test vehicle. This was a two-sided FR-4 PCB with gold plated copper traces and sensor electrodes. Two different golds were tested. One was a soft gold—the Metalor R MetGold Pure ATF process, plated 2.57 µm layer of 90 HV hardness. For the hard gold, the Metalor R EnGold 2015CVR process was followed, providing 2.41 µm of gold on top of 3.41 µm of nickel with a final hardness of 140–180 HV.
To handle the delicate microfluidics, the properties of dry film photoresist (like DuPont RistonTM, or DFR) was employed. This photosensitve material, with proper curing, can be stabilized for long life, and—in some applications—can be used as a photosensitive adhesive. Too bad that the dry-film solder mask (DFSM), like DuPont VacrelTM, was no longer available. A thin FR-4 layer (200 µm) was laminated with a 50 µm DFR, that was patterned using standard PCB photolithography, developed and cured for two hours to drive off any solvents. Then, adhesive-based flexible cover coating of PMMA film was laser micromachined to provide for larger fluidic supply channels (~5 mm), and the stackup laminated to the FR-4 sensing layer.Page 3 of 5
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Koh Young, Fuji, and Kurtz ERSA Drive Smart Manufacturing Solutions for EV and Automotive Electronics at Kunshan, China Technical Seminar
09/11/2025 | Koh YoungKoh Young Technology, the global leader in True 3D measurement-based inspection solutions, partnered with Fuji Corporation and Kurtz ERSA to host an exclusive technical seminar for leading automotive manufacturers in East China. Held on September 4 at Fuji’s factory in Kunshan, the event gathered participants representing over 35 companies.
MacDermid Alpha Presents at SMTA New Delhi, Bangalore Chapter, on Flux–OSP Interaction
09/09/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha contributes technical insights on OSP solderability at the Bangalore Chapter, SMTA reinforcing commitment to knowledge-sharing and industry collaboration.
Electra’s ElectraJet EMJ110 Inkjet Soldermask Now in Black & Blue at Sunrise Electronics
09/08/2025 | Electra Polymers LtdFollowing the successful deployment of Electra’s Green EMJ110 Inkjet Soldermask on KLA’s Orbotech Neos™ platform at Sunrise Electronics in Elk Grove Village, Illinois, production has now moved beyond green.
Absolute EMS: The Science of the Perfect Solder Joint
09/05/2025 | Absolute EMS, Inc.Absolute EMS, Inc., a six-time award-winning provider of fast turnaround, turnkey contract electronic manufacturing services (EMS), is drawing attention to the critical role of 3D Solder Paste Inspection (SPI) in ensuring the reliability of both FLEX and rigid printed circuit board assemblies (PCBAs).
Indium Corporation to Highlight High-Reliability Solder Solutions at SMTA Guadalajara Expo
09/04/2025 | Indium CorporationIndium Corporation, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, thin-film, and thermal management markets, will feature a range of innovative, high-reliability solder products for printed circuit board assembly (PCBA) at the SMTA Guadalajara Expo and Tech Forum, to be held September 17-18 in Guadalajara, Mexico.