-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Advances in Medical Diagnostics Using LoC and LoPCB Technologies
March 31, 2020 | Pete Starkey and Happy Holden, I-Connect007Estimated reading time: 14 minutes
LoC Materials
Over the years, several materials have been developed for use with LoC. It started in the late 1990s with silicon, as the microelectronics industry developed various methods of micromachining silicon (MEMS) for accelerometers for airbag sensors. From silicon wafers, the materials branched out to glass and then polymers. The most recent interest has been in PCBs and the use of various paper materials.
Silicon and glass have several advantages for fabricating an LoC, while being the most expensive. Polymers and especially PCBs are a new choice because of various materials available and the integration of electronics and various printing technologies. While paper is coming into focus for research, its use is only just beginning. Table 1 lists several characteristics of each of these materials.
Table 1: Base materials for LoC formations.
1. Silicon-based
Silicon started the LoC point-of-care (PoC) diagnostic uses. Figure 6 shows one of the first on the market—the Agilent 2100 Bioanalyzer System—for DNA, RNA, serum protein, and infectious disease analysis.
Figure 6: Agilent Technology has been involved in the life sciences since 1995. Their “nanolab chips” are used to analyze DNA, RNA, SARS, and other infectious disease proteins [2].
2. Glass-based
Glass is a lower cost material if electrical components and circuitry are not required. Glass can be fabricated into microchannels and deposited with many substances such as gels and coating. The glass device seen in Figure 7 is an Agilent 3100 Bioanalyzer Automated LC/MS that comes in numerous forms to separate chemicals and biological samples into microspray streams for use with liquid chromatography/mass spectrometry (LC/MS).
3. Polymer/PCB-based
Many polymers are also optically transparent and can be integrated into systems that use optical detection techniques such as fluorescence, UV/Vis absorbance, or Raman method. Moreover, many polymers are biologically compatible, chemically inert to solvents, and electrical insulating for applications where strong electrical voltages are necessary, such as electrophoretic separation and the surface chemistry of polymers. This can also be modified for specific applications. The most common polymers used in bio-MEMS include PMMA, PDMS, OSTEmer, and SU-8.
So, what could be achieved using PCB technology? Of recent years a lab-on-printed circuit board (LoPCB) approach has been suggested. The PCB industry is mature, well-established worldwide, and has standardized fabrication processes, materials, and production equipment currently dedicated to electronics applications, but with the potential to become a natural partner for LoC development and the scope to be straightforwardly up-scaled.
Enter Dr. Despina Moschou, a researcher at the Centre for Advanced Sensor Technologies, Department of Electronic and Electrical Engineering at the University of Bath in the U.K. Dr. Moschou is a frequent speaker at printed circuit events like AltiumLive [1], EIPC Conferences, and the ICT Conferences. Fortunately, for us, she has taken the time to prepare summaries of her, and the many others in this field, work on LoC and LoPCB µTAS approaches.
Early experimentation was focused on bio-electrodes for PCBs and on the microfluidics compatible with PCB fabrication. Figure 8 shows a test vehicle. This was a two-sided FR-4 PCB with gold plated copper traces and sensor electrodes. Two different golds were tested. One was a soft gold—the Metalor R MetGold Pure ATF process, plated 2.57 µm layer of 90 HV hardness. For the hard gold, the Metalor R EnGold 2015CVR process was followed, providing 2.41 µm of gold on top of 3.41 µm of nickel with a final hardness of 140–180 HV.
To handle the delicate microfluidics, the properties of dry film photoresist (like DuPont RistonTM, or DFR) was employed. This photosensitve material, with proper curing, can be stabilized for long life, and—in some applications—can be used as a photosensitive adhesive. Too bad that the dry-film solder mask (DFSM), like DuPont VacrelTM, was no longer available. A thin FR-4 layer (200 µm) was laminated with a 50 µm DFR, that was patterned using standard PCB photolithography, developed and cured for two hours to drive off any solvents. Then, adhesive-based flexible cover coating of PMMA film was laser micromachined to provide for larger fluidic supply channels (~5 mm), and the stackup laminated to the FR-4 sensing layer.Page 3 of 5
Suggested Items
KYZEN to Focus on Aqueous Cleaning and Stencil Cleaning at SMTA Juarez
05/20/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, will exhibit at the SMTA Juarez Expo and Tech Forum, scheduled to take place Thursday, June 5 at the Injectronics Convention Center in Ciudad Jarez, Chihuahua.
Koh Young Installs 24,000th Inspection System at Top 20 EMS
05/14/2025 | Koh YoungKoh Young, the global leader in True 3D measurement-based inspection and metrology solutions, proudly announces the installation of its 24,000th inspection system at a Top 20 Global EMS in Thailand.
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.
SolderKing Achieves the Prestigious King’s Award for Enterprise in International Trade
05/06/2025 | SolderKingSolderKing Assembly Materials Ltd, a leading British manufacturer of high-performance soldering materials and consumables, has been honoured with a King’s Award for Enterprise, one of the UK’s most respected business honours.
Knocking Down the Bone Pile: Gold Mitigation for Class 2 Electronics
05/07/2025 | Nash Bell -- Column: Knocking Down the Bone PileIn electronic assemblies, the integrity of connections between components is paramount for ensuring reliability and performance. Gold embrittlement and dissolution are two critical phenomena that can compromise this integrity. Gold embrittlement occurs when gold diffuses into solder joints or alloys, resulting in mechanical brittleness and an increased susceptibility to cracking. Conversely, gold dissolution involves the melting away of gold into solder or metal matrices, potentially altering the electrical and mechanical properties of the joint.