Cadence’s Clarity: 'I Can See Clearly Now'
December 3, 2020 | Clive "Max" Maxfield, Maxfield High-Tech ConsultingEstimated reading time: 11 minutes
One underlying problem is that many of today’s software analysis tools were conceived and developed in the era of single core computing, which means they simply don’t scale well, even if they are run on systems that have multiple cores with multiple threads running on each core. In order to address this problem, the boffins at Cadence started with a clean slate and created a distributed multiprocessing technology that was designed from the ground up to take full advantage of multiple cores—both central processing units (CPUs) and graphical processing units (GPUs).
Figure 1: A variety of simulations are available with the Clarity 3D Transient Solver, which builds on the success of their 3D Field Solver.
About 18 months ago, the folks at Cadence released the original Clarity 3D Solver, which is based on an algorithmic approach known as the Finite Element Method (FEM). I don’t know about you, but I’m a bear of little brain and I’m easily confused, so I tend to think of this tool as the “Clarity 3D (FEM) Solver” so as to distinguish it from the “Clarity 3D Transient Solver” in my poor old noggin. The Clarity 3D (FEM) Solver takes full advantage of Cadence’s distributed multiprocessing technology to deliver virtually unlimited capacity and 10X the speed of legacy 3D FEM field solvers while maintaining gold-standard accuracy. This solver is most commonly used as part of a flow in which it is employed to create highly accurate S-parameter models that can be used by other tools and simulators to perform signal integrity (SI), power integrity (PI), and electromagnetic compliance (EMC) analysis.
By comparison, the recently released Clarity 3D Transient Solver—which also takes full advantage of Cadence’s distributed multiprocessing technology to deliver virtually unlimited capacity—is based on a different numerical method called the finite difference time domain (FDTD), which allows us to apply stimulus, observe the results, and visualize transient electromagnetic fields in glorious technicolor.
Just how powerful is this? Well, as one simple example, when working with traditional tools, many developers employing DDR memory in their design may be limited to simulating just one or two signal pairs. By comparison, using Clarity, the same developers could simulate the entire DDR bus, which would already put them light-years ahead. Even better, they could model the entire DDR bus in the context of the rest of the system, which would be simply unimaginable with legacy tools.
One thing that really excited me was learning that the Clarity 3D Transient scales in an almost linear fashion. If you have only a single core, a simulation will take a certain amount of time. With two cores, the same simulation will take half the time. This math is so simple even I can wrap my brain around it. Suppose you are running a Clarity simulation that takes three days using 32 cores. In this case, if you throw 320 cores at the problem, the simulation will run up to 10X faster.
Where are all these cores coming from? Well, you can use your own on-premises distributed computing solution if you wish. Alternatively, by making their tools cloud-friendly, Cadence has provided the option for essentially unlimited scaling, which means essentially unlimited capacity.
The Clarity 3D Transient Solver produces results for voltage, current, field distribution, and field animation in the time domain. For frequency domain output, results include specific absorption rate (SAR), near/far field distribution, current distribution, and more.
In addition to being able to import mechanical structures from all major MCAD tools (thereby facilitating the modeling of enclosures), the Clarity 3D Transient Solver can easily read design data from all standard chip, IC package, and PCB platforms. Having said this, the Clarity 3D Transient Solver offers integration with Cadence’s own tools, such as Virtuoso Layout, SiP Layout, and Allegro PCB Designer.
Cadence’s Brad Griffin has noted that he and his colleagues have been working with an electronic equipment design, manufacturing, and evaluation company called Ultimate Technologies in Japan. The folks at Ultimate Technologies undertake a lot of engine control unit designs for Japanese automobile manufacturers. According to Brad, they say that the design cycle for a new ECU is typically 10 to 12 months, but by using the Clarity 3D Transient Solver they can literally cut up to three months off each design cycle, which is a more-than-significant achievement.
As Kevin Morris noted in a recent EE Journal column, “They say there are two types of engineers—those who design antennas on purpose, and those who design them by accident.” This is so true, which means that for anyone designing today’s incredibly complex systems with test-measurement accuracy, the Clarity 3D Transient Solver really is “that rainbow they’ve been praying for.”
Clive “Max” Maxfield is the founder of Maxfield High-Tech Consulting and the author of a variety of books, including “Bebop to the Boolean Boogie.” He has been at the forefront of EDA for over 30 years. To check out Max’s blog “Cool Beans,” click here.
Page 2 of 2Suggested Items
A Look Into the Future with Futurist Kevin Surace
04/07/2025 | Barry Matties, I-Connect007In this interview after his keynote address at IPC APEX EXPO 2025, futurist Kevin Surace reflects on important lessons learned and how they shaped his own future. He also makes some bold predictions for the use of AI in PCB board design, fabrication, and assembly—and what the common household will look like in 10 years. It’s an exciting and adventurous step into a future where humans work alongside robots, all for the betterment of everyone.
Bridging the Gap Between PCB Designers and Fabricators
04/03/2025 | Stephen V. Chavez, Siemens EDAWith today’s advanced EDA tools, designing complex PCBs in the virtual world does not necessarily mean they can be built in the real world. This makes the relationship between a PCB designer and a fabricator pivotal to the success of a project. In keeping with solid design for manufacturing (DFM) practices, clear and frequent communication is needed to dial and lock in design constraints that meet expectations while addressing manufacturing concerns.
IPC APEX EXPO Newcomer: Faith DeSaulnier of TTM Technologies
04/03/2025 | I-Connect007 Editorial TeamDuring the Newcomer’s Welcome Reception at IPC APEX EXPO, the I-Connect Editorial Team spoke with several first-time attendees. The following is our interview with Faith DeSaulnier, a process engineer based at TTM Technologies’ facility in Forest Grove, Oregon.
Ansys Semiconductor Solutions Certified by TSMC for Reliable, Accurate Analysis of Evolving Chip Designs
04/03/2025 | PRNewswireAnsys announced that PathFinder-SC is certified as a new ESD analysis solution for customers designing with TSMC's N2 silicon process technology. PathFinder-SC delivers a novel verification solution that provides superior capacity and performance, easily accommodating large designs in the cloud.
Real Time with... IPC APEX EXPO 2025: Insights into PCB Design and Manufacturing with Polar Instruments
04/03/2025 | Real Time with...IPC APEX EXPOErik Bateham discusses Polar's latest book, which enhances insights for PCB designers and manufacturers. The book, "The Designer's Guide to... More Secrets of High-Speed PCBs," features a guest chapter on 2D via design modeling. Erik highlights the industry's shift towards UHDI and the challenges in measuring at micron levels.