-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAll About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Avishtech Introduces Latest Generation of Its Revolutionary Gauss Stack PCB Stack-up Tool
March 1, 2021 | Avishtech, Inc.Estimated reading time: 5 minutes

Avishtech, the leading provider of innovative EDA stack-up and 2D field solver solutions, has announced the availability of the latest version of its Gauss Stack PCB stack-up design and simulation solution. This version includes an extensive dielectric materials library that enables rapid specification and implementation of a complete stackup design that includes both electromagnetic and thermomechanical simulations, fully integrated, with no additional user input of material data required. Gauss Stack accurately predicts resin starvation and glass stop issues and provides board level thermomechanical properties including coefficients of thermal expansion in all directions—X, Y and Z axis (both above and below Tg).
Keshav Amla, Founder and CEO of Avishtech, notes, “Today’s high data rate products including 112 Gbps/channel and 5G/mmWave applications have very little ‘wiggle room.’ A slight mistake in one area can quickly render a design inoperable or unmanufacturable. Prior to this point in time, there was no EDA product that enabled a real Multiphysics approach, where product developers can carry out electromagnetic and thermomechanical simulations, manufacturability checks and reliability predictions. The process consisted of ‘best guess’ estimations that had to be verified through the building of a test vehicle board. And, if there were problems detected at the test-board level, the only solution was to go back to square one and start the process all over again. This led to time-intensive and expensive rework that could then impact critical time-to-market windows, competitive advantages and overall profitability of a product line.”
“What we have done with Gauss Stack is to effectively bridge the gap between the design and manufacturing processes,” continues Amla. “Now, instead of just applying ‘best practices’ and hoping that the PCB you design will sync up with the characteristics of the dielectric material you have selected, with Gauss Stack, you can move forward with a right-the-first-time design that meets your performance characteristics but is also manufacturable, reliable and profitable.”
The specific features of Gauss Stack include: the ability to accurately model insertion loss by accounting for ground plane losses; the accurate prediction of resin starvation and glass stops that includes the effect of dielectric filler and conductor roughness; the ability to accurately simulate the PCB thermomechanical properties that are critical for reliability predictions; the further simulation, based on these board level thermomechanical properties, of plated though-hole reliability, microvia reliability and solder joint reliability; the ability to perform simulations for the impedance and frequency and roughness dependent losses associated with dielectric materials, for the full stackup with one click; and the additional ability to perform synthesis to simulate line widths required to achieve a target impedance, again for the full stackup with one click.
Amla continues, “At the higher level, Gauss Stack enables you to predict failure modes at the stackup design stage. Prior to now, product designers weren’t able to predict how resin content, glass weave, retained copper %, and other aspects of their designs would impact the board level properties or the manufacturability and reliability of their boards. And, with today’s high-frequency, high-date rate designs, these are often the hidden ‘gotchas’ that determine whether your product will work as designed or even if the product can be successfully manufactured. Gone are the days when designing for just one attribute was sufficient.”
While numerous EDA toolsets contain massive amounts of information in the form of libraries, the ability to quantify and qualify that data in a meaningful way is not always possible. Amla explains, “But, we haven’t just built another iteration of the same mouse trap—a broad-based laminate database. Instead, we have incorporated into Gauss Stack a level of intelligence in the form of a proprietary algorithm that is able to extract detailed mechanical properties at the polymer level that are critical for the afore-mentioned thermomechanical simulations that Gauss Stack conducts. Based on these simulations it’s possible to determine how these properties will impact the design, manufacturability, long-term operability and reliability of the end product. We have done extensive validation of our predictions on several built test vehicle boards and all of our results have been within experimental error.”
Lee Ritchey, Founder and President of Speeding Edge who is widely regarded as one of the leading industry experts in PCB design, states, “Extensive and meaningful innovation in EDA toolsets is a rarity in this industry. Toolset developers might offer tweaks of their products here and there that are of some value but it’s rare that a new toolset comes on the scene that can be a real game changer. Avishtech’s Gauss Stack is such a tool. It provides insight into those material characteristics and performance metrics that can make or break a design in terms of their predictability and reliability once the product is manufactured.”
Marc Licciardi, Founder of DfX Engineering, is an early adopter of Avishtech’s Gauss Stack. He notes, “What Avishtech has built with Gauss Stack is not just an incremental change, but, rather, a fundamental shift in how I can design PCB stacks. It allows me to catch manufacturability issues like resin starvation and glass lock/glass stop, which can also cause CAF and other related issues, as well as predict the reliability of the solder joints and vias, on top of impedance and loss modeling, all at the design stage, rather than learning of these issues many months into the development process. Gauss Stack empowers me to virtually prototype several different stackups to compare them in terms of manufacturability, reliability, and signal integrity and help identify which stackup fits the right balance of requirements to take products to market faster, without having to build test vehicle after test vehicle.”
Product Availability and Delivery
Gauss Stack is available now. Instead of the traditional pricing methodologies of a toolset license per seat, Avishtech utilizes a subscription-based customer fulfillment model. Each year, an Avishtech customer buys an annual subscription, based on their design needs criteria, and all the enhancements, additions and technology advancements made to the product during that subscription period are included in the subscription price. System software requirements include: OS Microsoft Windows 10 (64 bit); Recommended CPU—64-bit Intel i7 Quad Core processor running at 4.0 GHz or better (Requirement: 64-bit Intel Dual core processor running at 3.0 GHz); Recommended memory—16 GB or higher (Requirement 8 GB or higher).
Suggested Items
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Hands-On Demos Now Available for Apollo Seiko’s EF and AF Selective Soldering Lines
06/30/2025 | Apollo SeikoApollo Seiko, a leading innovator in soldering technology, is excited to spotlight its expanded lineup of EF and AF Series Selective Soldering Systems, now available for live demonstrations in its newly dedicated demo room.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Fresh PCB Concepts: Assembly Challenges with Micro Components and Standard Solder Mask Practices
06/26/2025 | Team NCAB -- Column: Fresh PCB ConceptsMicro components have redefined what is possible in PCB design. With package sizes like 01005 and 0201 becoming more common in high-density layouts, designers are now expected to pack more performance into smaller spaces than ever before. While these advancements support miniaturization and functionality, they introduce new assembly challenges, particularly with traditional solder mask and legend application processes.
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.