-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueAdvancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Dye-based Device Sees the Invisible
April 16, 2021 | ACN NewswireEstimated reading time: 1 minute
Scientists in Europe have designed an organic dye-based device that can see light waves in the shortwave infrared (SWIR) range. The device is easy to make using cheap materials, and is stable at high temperatures. The findings, published in the journal Science and Technology of Advanced Materials, could lead to more widespread use of inexpensive consumer SWIR imaging and sensing devices.
The human eye can only detect a very narrow segment of the electromagnetic spectrum, from around 400 to 700 nanometers. The SWIR region, on the other hand, extends from 1,000 to 2,500 nanometers. Specially designed cameras can take images of objects that reflect waves in the SWIR region. They are used for improving night vision, in airborne remote sensing, and deep tissue imaging. The cameras also help assess the composition and quality of silicon wafers, building structures and even food produce.
"These cameras are typically difficult to manufacture and are quite expensive, as they are made of inorganic semiconductor photodiode arrays interconnected with read-out integrated circuitry," says Roland Hany of the Swiss Federal Laboratories for Materials Science and Technology.
Hany worked with colleagues in Switzerland and Italy to design an organic dye-based 'SWIR upconversion device' that efficiently converts shortwave infrared light to visible light.
The device uses organic (materials made with carbon) components: a squaraine dye-coated flexible substrate combined with a fluorescent organic light-emitting diode (OLED). When the dye absorbs SWIR waves, an electric current is generated and directly converted into a visible image by the OLED.
The team had to play with the molecular composition of several squaraine dyes to get them to absorb specific wavelengths. Ultimately, they synthesized squaraine dyes that absorb SWIR light beyond 1,200 nanometers and remained stable up to 200 degrees Celsius. The finished dye-based device performed stably for several weeks under normal laboratory conditions.
"All-organic upconverters could lead to applications that can't be realized with current technology. For example, invisible night vision devices can be directly integrated into car windscreens without affecting the visual field," explains Hany.
The team is now working on shifting the dye's absorption further into the SWIR range. They are also using machine learning techniques to find new dye molecules capable of sensing SWIR waves. Finally, the team aims to improve device stability and sensitivity.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Is Glass Finally Coming of Age?
10/13/2025 | Nolan Johnson, I-Connect007Substrates, by definition, form the base of all electronic devices. Whether discussing silicon wafers for semiconductors, glass-and-epoxy materials in printed circuits, or the base of choice for interposers, all these materials function as substrates. While other substrates have come and gone, silicon and FR-4 have remained the de facto standards for the industry.
Creative Materials to Showcase Innovative Functional Inks for Medical Devices at COMPAMED 2025
10/09/2025 | Creative Materials, Inc.Creative Materials, a leading manufacturer of high-performance functional inks and coatings, is pleased to announce its participation in COMPAMED 2025, taking place November 17–20 in Düsseldorf, Germany.
Jiva Leading the Charge Toward Sustainable Innovation
09/30/2025 | Marcy LaRont, PCB007 MagazineEnvironmental sustainability in business—product circularity—is a high priority these days. “Circularity,” the term meant to replace “recycling,” in its simplest definition, describes a full circle life for electronic products and all their elements. The result is re-use or a near-complete reintroduction of the base materials back into the supply chain, leaving very little left for waste. For what cannot be reused productively, the ultimate hope is to have better, less harmful means of disposal and/or materials that can seamlessly and harmlessly decompose and integrate back into the natural environment. That is where Jiva and Soluboard come in.
Space Forge Inc. and United Semiconductors LLC Partner to Develop the Supply Chain for Space-grown Semiconductor Materials
09/29/2025 | Space Forge Inc.Space Forge Inc., the advanced materials company revolutionizing semiconductor manufacturing in space, has announced the signing of a strategic Memorandum of Understanding (MoU) with United Semiconductors LLC, a leading specialist in bulk crystal growth of III-V semiconductor compounds. The agreement formalizes the ongoing collaborative efforts that started over a year ago, marking a significant step forward in strengthening the partnership between the two companies.