-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Improved Thermal Interface Materials For Cooling High-Power Electronics
March 31, 2022 | Jeff Brandman, Aismalibar North AmericaEstimated reading time: 2 minutes
Heat has been a significant concern in electronics since the beginning of the electronics age when hot glowing vacuum tubes were first used to receive and transmit data bits. The transistor and integrated circuit effectively solved that basic problem, but increases in integration resulted in increased concentration of heat, exacerbated by relentless increases in operating frequency. While improvements in electronics technology have been able to mitigate many thermal issues at chip level thanks to improved semiconductor designs devised to operate at lower voltages (thus requiring less energy) the thermal management challenge continues to vex electronic product developers. Moreover, with ever denser heterogeneous integration solutions now being introduced, this is expected to remain a concern to be addressed for the foreseeable future. Thermal engineers have long known that thermal energy must ultimately be “returned to the air” but getting it there in an efficient way is of great importance. They know also that there are but three basic ways of removing heat from a system: conduction, convection, and radiation; of these, conduction is by far the most efficient.
In the manufacture of printed circuits, especially those used in high power applications, the board itself becomes an obvious potential means of helping to remove heat. However, the choice must be made carefully to assure that it fits well into the scheme of traditional manufacturing, as the materials required must not only remove heat but must also maintain the high electrical insulation properties that are vitally important to printed circuit designers and the products they develop. This has been a primary focus of Aismalibar for some time and the company has accordingly developed a family of new thermal interface material (TIM) technologies designed specifically for printed circuits. The unique materials the company has developed have thermal conductivities up to 3.2 W/mK (tested according to ASTM D5470) and high electrical insulation properties of up to 6 KV AC. (For comparison, nominal laminate materials have thermal conductivities of 0.25 W/mK.)
Concept Model for Thermal Management Chain in Power Electronics
Thermal interface materials are used by design in power electronics modules to facilitate the transfer and dissipation of the heat generated by the active and passive power components on the printed circuit board by enabling efficient transfer of heat though a cooling chain to a downstream cooling element, such as a heat spreader or heat pipe and cooling fan. The ultimate objective is to ensure that the maximum component temperature specified by the manufacturer is not reached.
In addition to providing high thermal conductivity, the TIM must also provide adequate electrical insulation properties; this is especially and increasingly important in high-voltage environments such as those experienced in modern electric vehicles. The better balanced the compromise between thermal conductivity and electrical insulation capability of the TIM, the higher the performance and reliability of the entire power electronics module over its service life.
To read this entire article, which appeared in the March 2022 issue of PCB007 Magazine, click here.
Suggested Items
sureCore Now Licensing its CryoMem Range of IP for Quantum Computing
11/26/2024 | sureCoresureCore, the memory specialist, has announced that it is now licensing its CryoMem™ suite of Memory IP that is designed for use at the extremely low temperatures required for Quantum Computing (QC) applications.
IPC Japan Puts More Focus on Collaboration, Standards Development, Advanced Packaging
11/26/2024 | Yusaku Kono, IPC Japan RepresentativeIn the past year, IPC has strengthened its relationships with key Japanese companies and government bodies. This was accomplished, in part, by a visit to Japan this past summer, where members of the IPC Asia team, punctuated by standards committee work last winter, forged stronger ties with government officials and companies involved in electronics manufacturing.
Subdued Electronics Industry Sentiment Continues in November
11/25/2024 | IPCIPC releases November 2024 Global Sentiment of the Electronics Manufacturing Supply Chain report
NEOTech Significantly Improves Wire Bond Pull Test Process
11/25/2024 | NEOTechNEOTech, a leading provider of electronic manufacturing services (EMS), design engineering, and supply chain solutions in the high-tech industrial, medical device, and aerospace/defense markets, proudly announces a major advancement in its wire bond pull testing process, reducing manufacturing cycle time by more than 60% while maintaining industry-leading production yields of over 99.99%.
PCB Design Software Market Expected to Hit $9.2B by 2031
11/21/2024 | openPRThis report provides an overview of the PCB design software market, detailing key market drivers, challenges, technological advancements, regional dynamics, and future trends. With a projected compound annual growth rate (CAGR) of 13.4% from 2024 to 2031, the market is expected to grow from $3.9 billion in 2024 to $9.2 billion by 2031.