-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Measuring Multiple Lamination Reliability for Low-loss Materials
April 4, 2022 | John Strubbe, Taiwan Union Technology CorporationEstimated reading time: 2 minutes
Taiwan Union Technology Corporation (TUC) provides copper-clad laminates and dielectric resin composites used to manufacture printed circuit boards. The enthalpy of these resin composites meets and exceeds customers’ objectives and shows the deterioration of the resin’s physical properties as a result of multiple lamination cycles (up to 10X). This article describes how TUC evaluates the possible change in resin structure due to multi-thermal laminations.
Polymer Degradation Based on Stress-Strain Curve
The curve describes the method of measuring polymer degradation using tan ? (tan delta)—ratio of G'' to G'. With regard to material compounds of synthetic macromolecules, the degradation is evaluated by measuring the resin composite interfaces and adhesion, and how they collectively play a role in determining the properties of the polymers during processing. The strength of polymer-polymer interface between polymers depends on the structure that develops during its formation.
The accumulating cycles on these resin composites can be analyzed by applying the principles of the stress-strain curve, a graphical representation of the relationship between stress (derived from measuring the load applied on the sample), and strain (derived from measuring the deformation of the sample).
The stress-strain curve provides design engineers with a long list of important parameters needed for application design. It is obtained by gradually applying load to the sample and measuring the deformation. These curves reveal many properties of a material, such as the Young’s modulus, the yield strength, and the ultimate tensile strength. Laboratory instruments are used to assess these responses, otherwise known as viscoelastic properties, under conditions of low mechanical force. Controlled heating and cooling are incorporated to study temperature effects on polymer stiffness and resiliency.
Method of Assessment
In this evaluation, we used dynamic mechanical analysis (DMA) to study and characterize storage modulus (E'), loss modulus (E''), and loss factor tan (delta) as a function of temperature. This is all captured by applying the glass transition temperature of resin composites.
From the elastic and storage modulus, we can calculate tan delta—ratio of G'' to G'—showing the relative degree of damping of the material. This is an indicator of the material’s efficiency in preventing energy loss from molecular rearrangements and internal friction. Tangent of delta, or tan delta, quantifies the way in which a material absorbs and disperses energy. It expresses the out-of-phase time relationship between an impact force and the resultant force transmitted to the supporting body, whereas loss modulus and storage modulus are attributes to the given tan delta.
To read this entire article, which appeared in the March 2022 issue of PCB007 Magazine, click here.
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.