-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
The Carbon Footprint of HDI: Direct Metallization vs. Electroless Copper
April 14, 2022 | Jordan Kologe and Leslie Kim, MacDermid Alpha Electronics SolutionsEstimated reading time: 2 minutes

Introduction
As the electronics supply chain contends with the struggles of moving out of the pandemic and into a new normal, it is increasingly obvious that a new normal will be one with sustainability and resource conservation as the top priority. Over the past year, we have seen printed circuit board manufacturers encounter challenges associated with environmental regulations, water and power outages, and pressures from the supply chain to reduce environmental footprints.
From the perspective of a board fabricator, especially one that specializes in HDI, a highly resource-intensive step in the process of making a printed circuit board is the primary metallization step. All circuit boards that have multiple layers go through such a primary metallization, which is either electroless copper or direct metallization (DM). The main difference between a direct metallization process and the more traditional electroless copper plating process is that the former deposits a paint-like conductive coating through absorption onto the surface, while the latter deposits a copper coating from solution through chemical reduction. The DM coatings are most typically a carbon or graphite, and this kind of board manufacturing has been done reliably for nearly four decades.
Electroless copper processes have a larger carbon footprint than direct metallization for several reasons. Compared to direct metallization, electroless copper is more water and energy intensive, has a higher variety and amount of chemical ingredients, and has higher process variation. When looking at the comparison from the perspective of HDI, the impact of all of this becomes even more critical.
HDI—Why Direct Metallization?
In conventional PCB multilayer, the primary metallization step is utilized once all innerlayers of the board have been laminated and drilled and the board is nearing completion. The microvia structure is the central feature of HDI that allows for the manufacture of high-density circuit boards today. The microvia essentially replaces the singular through-hole that connects multiple layers and allows individual layers to be routed to their neighbors directly and separately from other layers. To achieve this feat of engineering, however, every single build-up operation that the board goes through requires an additional run through a primary metallization step.
It is for this reason that the electroless copper and direct metallization are under constant scrutiny from a reliability perspective. Yet, as we will discuss shortly, the sustainability question has not been widely examined. This is important since the volume of boards in the industry that use microvia designs is as high as it has ever been and will continue to grow to meet the needs of any electronic design that can economically benefit from increased circuit density.
Can we create an ever-increasing amount of printed circuit boards with HDI technologies such as mSAP while also meeting increasingly strict targets for carbon mitigation, while also meeting profitability expectations?
To read this entire article, which appeared in the February 2022 issue of PCB007 Magazine, click here.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.