-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueProduction Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
First Deep Space Biology Experiment Begins, Follow Along in Real-Time
December 16, 2022 | NASAEstimated reading time: 1 minute

NASA’s BioSentinel has carried living organisms farther from Earth than ever before – more than one million miles. Aboard the shoebox-sized CubeSat are microorganisms, in the form of yeast – the very same yeast that makes bread rise and beer brew. On Dec. 5, BioSentinel was 655,730 miles from Earth when the BioSentinel team at NASA’s Ames Research Center in California’s Silicon Valley sent commands to the spacecraft to kick off the initial experiment for the first long-duration biology study in deep space. Scientists are now able to see how living organisms respond to deep space radiation.
Artemis missions at the Moon will prepare humans to travel on increasingly farther and longer-duration missions to destinations like Mars. Because yeast cells have similar biological mechanisms to human cells, including DNA damage and repair, studying yeast in space will help us better understand the risks of space radiation to humans and other biological organisms. BioSentinel’s science results will fill critical gaps in knowledge about the health risks in deep space posed by space radiation.
BioSentinel – which launched aboard Artemis I – is orbiting the Sun, positioned beyond Earth’s protective magnetic field. There, the CubeSat will run a series of experiments over the next five to six months.
NASA invites the public to virtually ride along with BioSentinel’s deep space journey using NASA’s “Eyes on the Solar System” visualization tool, a digital model of the solar system. This real-time simulated view of our solar system runs on real data. The positions of the planets, moons, and spacecraft – including BioSentinel – are shown where they are right now.
You can adjust the level of illumination on the spacecraft by clicking on the show/hide settings button in the bottom right of the screen. Once opened, you can toggle between flood, shadow, and natural lighting. Additionally, you can use time controls – at the bottom of the screen – to fast-forward or rewind time in the simulated view, to preview BioSentinel’s future trajectory or see a recap of its prior path.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
MES Software Tools Need Thoughtful Integration
10/21/2025 | Nolan Johnson, SMT007 MagazineThe Global Electronics Association recently published a survey report on the state of EMS production software. This project, led by Thiago Guimaraes, director of industry intelligence, connects the dots across the global electronics value chain to uncover practical insights that individual companies might not have seen on their own. In this interview, Thiago discusses the whys and hows of this report.
Light-curable Solutions for Reliable Electronics in Space Applications
10/15/2025 | Virginia Hogan, DymaxDesigning electronics for space environments, particularly those in low Earth orbit (LEO), requires careful consideration of materials that can withstand extreme conditions while supporting long-term reliability. Engineers designing satellite systems, aerospace instrumentation, and high-altitude platforms face a familiar set of challenges: contamination control, mechanical stress, thermal cycling, and manufacturability.
Analog Devices Launches ADI Power Studio™ and New Web-Based Tools
10/14/2025 | Analog Devices, Inc.Analog Devices, Inc., a global semiconductor leader, announced the launch of ADI Power Studio, a comprehensive family of products that offers advanced modeling, component recommendations and efficiency analysis with simulation. In addition, ADI is introducing early versions of two new web-based tools with a modernized user experience under the Power Studio umbrella:
Elementary, Mr. Watson: High Power: When Physics Becomes Real
10/15/2025 | John Watson -- Column: Elementary, Mr. WatsonHave you ever noticed how high-speed design and signal integrity classes are always packed to standing room only, but just down the hall, the session on power electronics has plenty of empty chairs? It's not just a coincidence; it's a trend I've observed over the years as both an attendee and instructor.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).