-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueDesigning Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
RF and Wireless PCB Design
April 20, 2023 | I-Connect007 Editorial TeamEstimated reading time: 3 minutes

RF is becoming almost ubiquitous; how many devices in your home contain at least one antenna? Automotive, aerospace, defense, and IoT segments are all pushing the envelope for wireless communication. But designing an RF PCB is a lot different than designing typical boards.
We recently met with IPC instructor Kris Moyer for a discussion about designing RF PCBs and wireless applications in general. Kris teaches RF design, among other things, so we asked him to discuss RF design techniques, how designing for wireless applications differs from laying out traditional PCBs, and when to design your own antenna vs. using commercial off-the-shelf (COTS) antennas.
Andy Shaughnessy: Kris, tell us about the RF and wireless PCB market. How does it compare to the rest of the market for PCBs?
Kris Moyer: It's never huge, but with the increase of smart devices and IoT devices, it’s definitely growing. It’s not easy to design. Think about your modern cellphone, or your modern smart watch that has GPS, a Wi-Fi antenna, a cellular antenna, and a Bluetooth antenna.
Happy Holden: Now there’s wireless charging.
Moyer: Right. So, there are five different RF frequencies and modules running simultaneously on one board. There are probably more than just five that we're not aware of in terms of what the military, NASA, and other organizations like SpaceX are doing with hundreds of little satellites. The big question is: How do you get all of that to work together and not interfere with each other?
Shaughnessy: Our readers have a lot of questions about antennas and antenna design.
Moyer: This means not only designing the antenna design itself, but also the Bluetooth and Wi-Fi protocols, FCC compliance, and the system-level design to integrate all these different communication methods. You have all kinds of different IEEE protocols involved with that, and how they may interact or interfere with each other. How do you deal with SMA connectors, controlled impedances, wave cavities, and so on?
Back in the radio days, it was literally just an amplifier, a transmitter, and a receiver. The design of the antenna was critical because it controlled your frequency and so on. That's why we used to have TV antennas back in the day, especially the old TV antennas that were triangle-shaped. They used the triangle shape because each of those lengths of antenna picked up a different frequency. Nowadays, it's not only the design of the antenna, but it's which chip you need to use. They actually sell not only 3D antennas, but pre-packaged antennas in chip packages. You can buy a Bluetooth antenna in the equivalent of, say, a 1206 or a chip package, and just solder it onto the board.
Shaughnessy: It seems like the easiest way forward would be to use an off-the-shelf antenna, since it’s been validated, I assume, and that preliminary work has been done.
Moyer: There’s more math involved in designing your own antenna, which is technically a “copper geometry device.” If you're trying to design the antenna out of the board trace itself, there is a lot of engineering mathematics and analysis that goes into that. Specifically, to get the antenna to work right, you have to convert to the SAP or mSAP process so you don't get non-ideal geometries that you get from the standard subtractive process. You must be much more diligent about the width and the clearance, especially if you're serpentining your antenna rather than making one long straight trace, to save board space.
With a serpentine pattern, now the gap width and the length before the turns will be much more critical than it is with just the simple serpentining I would do for length matching. There's a lot more mathematics involved if you're trying to design the actual antenna. If, on the other hand, all you're doing is buying parts and trying to connect them, you're still into RF board routing techniques, but without the complex mathematics of antenna design.
To read this entire interview, which appeared in the April 2023 issue of Design007 Magazine, click here.
Suggested Items
IPC Releases Version 2.0 of IPC-2591, Connected Factory Exchange, with Expanded Device Coverage and Smarter Data
04/23/2025 | IPCIPC announces the release of IPC-2591, Connected Factory Exchange (CFX), Version 2.0, the global standard for plug-and-play, machine-to-machine, and machine-to-system communication for digital manufacturing.
ViTrox Marks 25 Years of Innovation with Cutting-Edge Solutions at NEPCON China 2025 in Shanghai
04/18/2025 | ViTrox TechnologiesViTrox, which aims to be the World’s Most Trusted Technology Company, is proud to announce its participation in NEPCON China 2025, taking place from April 22–24, 2025, at Booth #1E45, Shanghai World Expo Exhibition & Convention Centre (SWEECC).
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.
KOKI Announces Upcoming Webinar on Solder Voiding – Causes and Remedies
04/16/2025 | KOKIKOKI, a global leader in advanced soldering materials and process optimization services, is pleased to announce its upcoming webinar, “Solder Voiding—Causes and Remedies,” which will take place on Tuesday, April 22, 2025, at 12:00 PM CDT. Jerome McIntyre, Regional Sales & Applications Engineer at KOKI Americas, will present this live session.
Real Time with... IPC APEX EXPO 2025: Transition Automation Focusing on Security Coatings and Squeegee Technology
04/16/2025 | Real Time with...IPC APEX EXPOMark Curtin, President of Transition Automation, gives an update on recent innovations at his company. He highlights a record sales month and their new focus on security coatings to fight counterfeiting. Mark explains the engineering behind their durable squeegees, the importance of maintenance, and the value of considering overall costs over just price.