-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueThe Rise of Data
Analytics is a given in this industry, but the threshold is changing. If you think you're too small to invest in analytics, you may need to reconsider. So how do you do analytics better? What are the new tools, and how do you get started?
Counterfeit Concerns
The distribution of counterfeit parts has become much more sophisticated in the past decade, and there's no reason to believe that trend is going to be stopping any time soon. What might crop up in the near future?
Solder Printing
In this issue, we turn a discerning eye to solder paste printing. As apertures shrink, and the requirement for multiple thicknesses of paste on the same board becomes more commonplace, consistently and accurately applying paste becomes ever more challenging.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Everyday Life, Improved by Light: GRYPHON’s Photonic Discoveries
July 11, 2024 | DARPAEstimated reading time: 2 minutes
Radio frequency (RF) and microwave signals are integral carriers of information for technology that enriches our everyday life – cellular communication, automotive radar sensors, and GPS navigation, among others. At the heart of each system is a single-frequency RF or microwave source, the stability and spectral purity of which is critical. While these sources are designed to generate a signal at a precise frequency, in practice the exact frequency is blurred by phase noise, arising from component imperfections and environmental sensitivity, that compromises ultimate system-level performance.
This reality drives undesirable tradeoffs between performance, environmental sensitivity, and size that make the simultaneous achievement of stability, precision, and agility in an ultra-compact form factor an elusive feat. However, DARPA’s Generating Radio Frequency with Photonic Oscillators for Low Noise (GRYPHON) program could change all of that, as performers recently demonstrated in the first phase of the program aimed at developing compact, ultra-low-noise microwave frequency oscillators.
While extremely low phase noise sources do exist, they are expensive, lack tunability, and are impractically large for deployment on mobile platforms that would enable advanced sensing and communication applications. GRYPHON seeks to change this paradigm by realizing viable, small-footprint microwave sources that transcend today’s tradeoffs and far exceed current state of the art. Launched in January 2022, the program builds on advances in optical frequency division, integrated photonics, and non-linear optics – including those from previous DARPA efforts – to establish a new technology regime that transforms military and commercial capabilities.
GRYPHON performers, using different light-based approaches, have made critical progress towards generating high-purity microwaves in significantly reduced form factors. By integrating low-noise lasers with complex optical structures on low-loss photonic platforms, along with high-speed integrated circuits, researchers have established the viability of achieving ultra-low phase noise performance and shrinking these capabilities from conventional table-top sizes down to microchip-size form factors.
"The results and impact from Phase 1 of GRYPHON really show what’s possible. For the first time, we’re seeing how integrated photonics allows us to break from the traditional size vs. performance vs. capability trade space and operate in a regime with exquisite performance that is exponentially better than current state of the art," said Dr. Justin Cohen, GRYPHON program manager. "Better and faster communications, more accurate sensing, improved detection capabilities – this work could disrupt and advance countless applications."
The research findings of GRYPHON’s performers were recently featured in Science and Nature journal articles, as well as via the National Institute of Standards and Technology, highlighting the work of contributing NIST researchers and their team. Now in Phase 2, GRYPHON researchers are seeking to further reduce phase noise in their already high-performance sources while introducing tunability and compactifying to targeted form factors, all of which aim to provide systems with unprecedented utility and access to previously unattainable applications.
Suggested Items
iNEMI End-of-Project Webinar: Investigation of AI Enhancement to AOI for PCBA
10/25/2024 | iNEMIAutomated optical inspection (AOI) systems are essential in electronic manufacturing for ensuring the quality of printed circuit board assemblies (PCBAs).
Northrop Grumman’s Deep Sensing and Targeting Technology Goes Airborne to Advance Vision for the US Army
10/22/2024 | Northrop GrummanPhase two of Northrop Grumman Corporation’s Deep Sensing and Targeting (DSaT) system was successfully demonstrated at Vanguard 24, an annual capstone experiment hosted by the U.S. Army. DSaT gathers space-based data for long-range precision fires while airborne, helping bridge specific capability gaps and future warfighting requirements by expanding mission effectiveness and standoff range for Army platforms.
KLA Completes First Phase of US$200 Million Singapore Operations Expansion
10/04/2024 | KLAKLA, a world leader in developing industry-leading equipment and services that advance innovation throughout the electronics industry, today celebrated the completion of Phase 1 of its newest manufacturing facility.
RTX to Develop Ultra-wide Bandgap Semiconductors for DARPA
10/03/2024 | RTXRaytheon, an RTX business, has been awarded a three-year, two-phase contract from DARPA to develop foundational ultra-wide bandgap semiconductors, or UWBGS, based on diamond and aluminum nitride technology that revolutionize semiconductor electronics with increased power delivery and thermal management in sensors and other electronic applications.
A Parametric Approach to the Environmental Impact of PCB Fabrication
09/09/2024 | Maarten Cauwe, imecSustainability for electronics is receiving more attention due to environmental concerns, regulatory obligations, and to ensure competitiveness in a growing market for sustainable products. To facilitate the discussion on the environmental impact of electronics, there is a strong need for data on energy use, carbon footprint, greenhouse gas (GHG) emissions, hazardous chemicals used during manufacturing, waste generation, etc.