-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueProper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Cost-optimize Your PCB Design and Specifications
August 20, 2024 | Erik Pedersen and Richard Koensgen, ICAPE GroupEstimated reading time: 1 minute
Knowledge is the key to identifying the small details that makes the big cost difference for your printed circuit board. There are many types of printed circuit boards and multiple choices between the development of schematic and BOM to PCB technology selection, electronic PCB design, mechanical and physical properties, and PCB specification.
Component Technology and BGA Size
The component size and technology have the most significant influence on the PCB cost. Most surface-mounted microchips can be designed into standard PCBs with plated through-holes. If the same microchip comes in a BGA package, it might need microvias and buried vias using a higher wiring density to be designed into an HDI PCB. Generally, PCBs containing BGAs become HDI PCBs when the ball center-to-center pitch is below 0.8 mm. If your physical board properties allow it and the component availability is equal, you should strive to find the BGA with the largest pitch to reduce the component and PCB cost.
For example, the same BGA microchip can be found with pitch 0.8 mm, 0.6 mm, and 0.5 mm. The 0.8 mm pitch BGA can be routed on an eight-layer standard PCB with a price index of 100. The 0.6 mm pitch can be routed on a (1-6-1) eight-layer, one-step HDI PCB with a price index of 200. The 0.5 mm pitch BGA can be routed on a (2-4B-2) eight-layer, three-step HDI PCB with a price index of 350. The number of lamination steps is the most significant cost driver for HDI and ultra HDI PCBs. Designs with BGAs equal to or less than 0.4 mm and multiple rows challenge the capability of HDI suppliers, which leads to the use of UHDI design parameters and thereby reduces the availability and increases the cost.
Material Selection
Correct material selection that complies with the performance and functionality of your application also plays a crucial role in the PCB cost.
The most common stackups of standard PCBs are specified with 35 µm Cu on all layers. The manufacturer starts on 17.5 µm Cu on outer layers and 35 µm Cu on inner layers, since the final outer layer Cu thickness reaches approximately 35 µm after plating. But 35 µm Cu on the inner layers isn’t always required and can be replaced by 17.5 µm for the current flowing in many electronic devices. This, in turn, lowers costs.
To continue reading this article, which originally published in the August 2024 Design007 Magazine, click here.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Polar Instruments Announces Additive Transmission Line Support for Si9000e
08/20/2025 | Polar InstrumentsTransmission lines embedded into the PCB surface are a feature of UHDI constructions. The 2025 fall release of Polar's Si9000e PCB impedance & insertion loss transmission line field solver incorporates eight new single ended, differential and coplanar transmission line structures.
Meet the Round 1 Winners of the Bright Manufacturing Student Challenge 2025
08/20/2025 | Tara Dunn, SMTAThe Bright Manufacturing Student Challenge is an opportunity for student teams to design and develop innovative solutions for real-world electronics manufacturing problems. The eight-week competition, sponsored by the Electronics Manufacturing & Assembly Collaborative (EMAC) through electronicsworkforce.com, allows students to showcase their technical skills, creativity, and problem-solving abilities.
Inventing the Future: An Interview with Dr. Ed Schweitzer
08/20/2025 | Barry Matties, I-Connect007Dr. Edmund O. Schweitzer III, founder of Schweitzer Engineering Laboratories (SEL), has a corner office in the company’s world headquarters in Pullman, Washington. Forty-two years after his SEL-21—the first microprocessor-based digital protective relay—ushered in a new era of power-system protection, he has forever changed the way the world safeguards its electric grids. In this three-hour conversation, Dr. Schweitzer reveals that he remains excited to get to work each day, unpacking the “better, cheaper, faster, simpler” mantra that’s still driving SEL’s innovation, and the culture glue that keeps more than 7,000 employee-owners rowing in unison.
Amphenol to Acquire Trexon
08/19/2025 | BUSINESS WIREAmphenol Corporation announced a definitive agreement to acquire Trexon for approximately $1 billion in cash, subject to customary post-closing adjustments.
American Made Advocacy: Where’s the Budget for a Modern Military Run on Microelectronics?
08/19/2025 | Shane Whiteside -- Column: American Made AdvocacyIn a world of peer threats and urgent transformation, having secure, trusted, and reliable microelectronics is non-negotiable. While largely hidden, microelectronics are the ubiquitous enablers of modern defense platforms. Nothing in the current American arsenal flies, floats, or fights without a technology stack that includes a semiconductor, an integrated circuit substrate, and a printed circuit board.