-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
Fueling the Workforce Pipeline
We take a hard look at fueling the workforce pipeline, specifically at the early introduction of manufacturing concepts and business to young people in this issue of PCB007 Magazine.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Combatting Advanced Techniques in Counterfeiting
October 30, 2024 | Anthony BryantEstimated reading time: 1 minute

In today's interconnected global marketplace, counterfeit electronics pose a significant threat to industries ranging from aerospace and defense to healthcare and telecommunications. As counterfeiters employ increasingly sophisticated techniques, the need for robust strategies to prevent, mitigate, and identify counterfeit components has become critical. This article explores the advanced techniques used in counterfeiting, the potential involvement of state-owned enterprises (SOEs), and comprehensive strategies for combating this pervasive issue.
Advanced Techniques in Counterfeiting
Counterfeiters continually evolve their methods to produce fake electronic components that closely mimic authentic parts. Some of the most advanced techniques include:
- Re-marking and re-packaging: Altering legitimate part markings and repackaging components to misrepresent them as new or different parts.
- Exploiting supply chain vulnerabilities: Counterfeiters exploit vulnerabilities in the supply chain, introducing fake components that can go undetected until integrated into critical systems.
- Reverse engineering: This process involves disassembling genuine products to replicate their design and functionality, creating clones that are difficult to distinguish from the original.
- Use of cutting-edge technologies: Counterfeiters leverage advanced technologies like artificial intelligence (AI), 5G, and quantum computing to produce highly accurate replicas that challenge conventional detection methods.
Figure 1: Four key entry points of counterfeits into the electronic components supply chain.
The Role of State-Owned Enterprises
Chinese state-owned enterprises (SOEs) have been implicated in producing cloned counterfeit electronic parts, particularly complex semiconductor chips like fine-pitch grid arrays (FPGAs) and microcontrollers. These components are essential in high-stakes applications, including medical, military, and aerospace systems.
The cloning process often involves reverse engineering authentic products and, in some cases, intellectual property theft. SOEs possess advanced manufacturing technologies that allow them to produce high-quality counterfeit components, making it challenging to distinguish between genuine and cloned parts. The involvement of SOEs is particularly concerning due to their access to advanced manufacturing technologies and potential for large-scale operations.
To read the entire article, which original published in the October 2024 SMT007 Magazine, click here.
Suggested Items
Knocking Down the Bone Pile: Basics of Component Lead Tinning
04/02/2025 | Nash Bell -- Column: Knocking Down the Bone PileThe component lead tinning process serves several critical functions, including removing gold plating, mitigation of tin whiskers, reconditioning of component solderability issues, and alloy conversion from lead-free (Pb-free) to tin-lead or from tin-lead to lead-free for RoHS compliance. We will cover each of these topics in more detail in upcoming columns.
New Cryostatic Systems Elevate Current Research on Qubits
03/31/2025 | Fraunhofer IAFThe Center Nanoelectronic Technologies (CNT) at Fraunhofer IPMS has recently acquired new cryostats for the research on qubits and the qualification of superconducting systems.
Mazda, ROHM Begin Joint Development of Automotive Components Using Next-Generation Semiconductors
03/28/2025 | ROHMMazda Motor Corporation and ROHM Co., Ltd. have commenced joint development of automotive components using gallium nitride (GaN) power semiconductors, which are expected to be the next-generation semiconductors.
HARTING 3D-Circuits Leads 3D-MID Innovation: Transforming Consumer Electronics with Advanced Technology
03/27/2025 | PRNewswireThe consumer electronics industry is experiencing a remarkable transformation, propelled by rapid technological advancements and an increasing demand for compact, efficient, and multifunctional devices. Central to this evolution is 3D-MID (Three-Dimensional Mechatronic Integrated Devices) technology, which redefines design standards and drives innovation.
GlobalFoundries Certifies Ansys Lumerical Photonic Design Tools for GF Fotonix™ Platform
03/27/2025 | PRNewswireAnsys and GlobalFoundries collaborated to certify four Ansys photonic solvers, empowering engineers to simulate passive and active photonic components with high-fidelity in the GF Fotonix platform.