New Power Management Chips from TI Maximize Protection, Density and Efficiency for Modern Data Centers
March 24, 2025 | Texas InstrumentsEstimated reading time: 1 minute
Texas Instruments (TI) debuted new power-management chips to support the rapidly growing power needs of modern data centers. As the adoption of high-performance computing and artificial intelligence (AI) increases, data centers require more power-dense and efficient solutions. TI's new TPS1685 is the industry's first 48V integrated hot-swap eFuse with power-path protection to support data center hardware and processing needs. To simplify data center design, TI also introduced a new family of integrated GaN power stages, the LMG3650R035, LMG3650R025and LMG3650R070, in industry-standard TOLL packaging. TI is showcasing these devices at the 2025 Applied Power Electronics Conference (APEC), March 16-20, in Atlanta, Georgia.
"With data centers increasingly demanding more energy, powering the world's digital infrastructure begins with smarter, more efficient semiconductors," said Robert Taylor, general manager, Industrial Power Design Services. "While advanced chips drive AI's computational power, analog semiconductors are key to maximizing energy efficiency. Our latest power-management innovations are enabling data centers to reduce their environmental footprint while supporting the growing needs of our digital world."
Reach power levels beyond 6kW with intelligent system protection
As power demands surge, data center designers are shifting to 48V power architectures for enhanced efficiency and scalability to support components such as CPUs, graphics processing units and AI hardware accelerators. TI's 48V stackable integrated hot-swap eFuse with power-path protection empowers designers to tackle high-power (>6kW) processing needs with a scalable device that simplifies design and reduces solution size by half compared to existing hot-swap controllers in the market.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
ROHM Develops Ultra-Compact CMOS Op Amp: Delivering Industry-Leading Ultra-Low Circuit Current
09/11/2025 | ROHMROHM’s ultra-compact CMOS Operational Amplifier (op amp) TLR1901GXZ achieves the industry’s lowest operating circuit current.
Zhen Ding Technology Highlights AI-Driven Transformation of the PCB Industry at SEMICON Taiwan 2025
09/11/2025 | Zhen Ding TechnologyArtificial intelligence (AI) is expanding rapidly, with almost no field left untouched by the wave of computing power-driven transformation.
Hitachi Unveils $1B U.S. Investment in Critical Grid Infrastructure
09/05/2025 | Hitachi EnergyHitachi Energy, a wholly owned subsidiary of Hitachi, Ltd., and global leader in electrification, today announced a historic investment of more than $1 billion USD to expand the production of critical electrical grid infrastructure in the United States.
Wisdom From Data-center Power Pioneer Mike Mosman
09/02/2025 | Barry Matties, I-Connect007Few engineers have moved the levers of modern electronics more decisively than Mike Mosman. From the pre-email computer rooms of the 1980s to today’s hyperscale campuses cranking out AI cycles, the retired power engineer and co-founder of CCG Facilities Integration has spent four decades proving that uptime is a design discipline, not a hope.
Connect the Dots: How to Avoid Five Common Causes of Board Failure
09/04/2025 | Matt Stevenson -- Column: Connect the DotsBoards fail for various reasons, and because I’ve been part of the PCB industry for a long time, I’ve seen most of the reasons for failure. As part of my ongoing crusade to help designers design for the reality of manufacturing, here are five common causes for board failure and how to avoid them.