-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Estimated reading time: 1 minute

Contact Columnist Form
Dry Film Photoresist Adhesion Tests
Laminate construction, chemical composition of the copper foil surface and its topography, resist composition, lamination conditions, and hold times all affect dry film photoresist adhesion, conformation, and, ultimately PWB yields. This area has been studied extensively over the years.
A number of resist adhesion test methods have been employed to test different surfaces and process conditions with regard to dry film adhesion. The constant in such studies is a given dry film resist that is tested on different copper surfaces and under different process conditions. Conversely, one can keep the laminate construction and copper foil preparation as well as lamination conditions and hold times the same, while testing the adhesion characteristics of different films.
There are several failure modes, or sources of yield losses, if the copper surface is not properly prepared. Failure may be due to insufficient or excessive adhesion:
1. Failure to achieve good adhesion in a print-and-etch process will cause etchant attack under the resist and ultimately an “open” defect.
2. Failure to achieve good adhesion in a plating process will cause tin/lead underplating, ultimately leading to shorting defects (“shorts”).
3. Failure to achieve good release of unexposed resist during development can cause etch retardation in a print-and-etch process, ultimately leading to shorts.
4. Failure to achieve good release of unexposed resist during development in a plating process can cause poor adhesion of the plated copper to the copper base (copper-copper peelers).
5. Failure to achieve good release of exposed resist in a print-and-etch process on innerlayers can inhibit the formation of copper oxide multilayer bonder (or alternative bonders) on such a copper surface.
6. Failure to achieve good release of exposed resist in a plating process can cause etch retardation.
Read the full column here.
Editor's Note: This column originally appeared in the October 2014 issue of The PCB Magazine.
More Columns from Karl's Tech Talk
Karl's Tech Talk: Digital Imaging UpdateKarl’s Tech Talk: Electronic Packaging Levels
Green Legislation and the Impact on Electronic Materials and Processes
Digital Imaging Revisited
Dry Film Photoresist Thickness Selection Criteria
Quick-Turn Circuit Board Shops
Optical Interconnects
Signal Loss