-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueMoving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Advanced Printing for Microelectronic Packaging
March 11, 2015 | Kenneth H. Church, Xudong Chen, Joshua M. Goldfarb, Casey W. Perkowski, Samuel LeBlanc, nScrypt Inc.Estimated reading time: 16 minutes
A number of important printing factors need to be considered when printing fine lines. One is the diameter of the pen tip. Typically the inner diameter does not set the width of the dispense feature; this is usually set by the out diameter of the pen tip. In addition, there is a slumping issue. Most shear thinning materials will slump after being printed. Therefore to print a fine feature such as 100 microns, it is many times necessary to go to a smaller pen tip such as a 50/75. This implies 50 micron inner diameter and 75 micron outer diameter. Additionally, it will be important to get in proximity of the substrate. Proximity is affected by the pen tip diameter. If the diameter is very large (hundreds to thousands of microns) then the gap set between the pen tip and the substrate can be very large. The volume being dispensed will be very large. If the desire for small features is important, then the small gap will be important. Gaps on the order of microns and tens of microns can have an effect on printing as well. The flow rate for dispensing can be affected by the gap.
The flow rate of the pump (which determines the dispensed feature size) depends on the value of the pressure, the valve opening and the size of the tip orifice. Engineers and researchers at the company also discovered that the dispensing height (the gap between the dispensing nozzle tip and the substrate) plays a crucial role in the dispensing volume and especially when the feature size gets smaller or thin lines are printed. For these types of features the nozzle tip needs to be closer to the substrate. This will increase the flow resistance and thus reduce the flow rate. It is expected that the pressure drop will be dominated by the dispensing gap when the gap is 50% smaller than the tip size. By applying the above mentioned CFD (Computational Fluid Dynamic) model at various dispensing heights (Figure 2), the flow rates were calculated [5].
Figure 2. Schematic drawing of the CFD model.
The pressure drop with different dispensing heights is plotted in the Figure 3. At a very small gap (Figure 3a), the pressure
drop is dominated by the substrate. At a large gap (Figure 3c), the pressure drop is mainly determined by the tip orifice.
There is a transient region (Figure 3b) where the pressure drop is affected by both of them.
Figure 3. Pressure drop vs. different dispensing height. (a) 5 microns. (b) 15 microns. (c) 30 microns.
The flow rate vs. dispensing height is plotted in the Figure 4. It can be seen that the flow rate increases to a steady state value at the dispensing height that is proportional to the value of the pen tip diameter. The pressure moves the steady state flow rate with the lowest pressure achieving steady state the fastest. It is also obvious that the flow rate is sensitive to a change in dispensing heights if they are below a certain value (50 microns in this case). The lower the dispensing height, the more it affects the flow rate.
Figure 4. Flow Rate versus Dispense Height
Page 2 of 3
Suggested Items
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.
SolderKing’s Successful Approach to Modern Soldering Needs
06/18/2025 | Nolan Johnson, I-Connect007Chris Ward, co-founder of the family-owned SolderKing, discusses his company's rapid growth and recent recognition with the King’s Award for Enterprise. Chris shares how SolderKing has achieved these award-winning levels of service in such a short timeframe. Their secret? Being flexible in a changing market, technical prowess, and strong customer support.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
Breaking Silos with Intelligence: Connectivity of Component-level Data Across the SMT Line
06/09/2025 | Dr. Eyal Weiss, CybordAs the complexity and demands of electronics manufacturing continue to rise, the smart factory is no longer a distant vision; it has become a necessity. While machine connectivity and line-level data integration have gained traction in recent years, one of the most overlooked opportunities lies in the component itself. Specifically, in the data captured just milliseconds before a component is placed onto the PCB, which often goes unexamined and is permanently lost once reflow begins.
BEST Inc. Introduces StikNPeel Rework Stencil for Fast, Simple and Reliable Solder Paste Printing
06/02/2025 | BEST Inc.BEST Inc., a leader in electronic component rework services, training, and products is pleased to introduce StikNPeel™ rework stencils. This innovative product is designed for printing solder paste for placement of gull wing devices such as quad flat packs (QFPs) or bottom terminated components.