-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueTechnical Resources
Key industry organizations–all with knowledge sharing as a part of their mission–share their technical repositories in this issue of SMT007 Magazine. Where can you find information critical to your work? Odds are, right here.
The Path Ahead
What are you paying the most attention to as we enter 2025? Find out what we learned when we asked that question. Join us as we explore five main themes in the new year.
Soldering Technologies
Soldering is the heartbeat of assembly, and new developments are taking place to match the rest of the innovation in electronics. There are tried-and-true technologies for soldering. But new challenges in packaging, materials, and sustainability may be putting this key step in flux.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Advanced Printing for Microelectronic Packaging
March 11, 2015 | Kenneth H. Church, Xudong Chen, Joshua M. Goldfarb, Casey W. Perkowski, Samuel LeBlanc, nScrypt Inc.Estimated reading time: 16 minutes
A number of important printing factors need to be considered when printing fine lines. One is the diameter of the pen tip. Typically the inner diameter does not set the width of the dispense feature; this is usually set by the out diameter of the pen tip. In addition, there is a slumping issue. Most shear thinning materials will slump after being printed. Therefore to print a fine feature such as 100 microns, it is many times necessary to go to a smaller pen tip such as a 50/75. This implies 50 micron inner diameter and 75 micron outer diameter. Additionally, it will be important to get in proximity of the substrate. Proximity is affected by the pen tip diameter. If the diameter is very large (hundreds to thousands of microns) then the gap set between the pen tip and the substrate can be very large. The volume being dispensed will be very large. If the desire for small features is important, then the small gap will be important. Gaps on the order of microns and tens of microns can have an effect on printing as well. The flow rate for dispensing can be affected by the gap.
The flow rate of the pump (which determines the dispensed feature size) depends on the value of the pressure, the valve opening and the size of the tip orifice. Engineers and researchers at the company also discovered that the dispensing height (the gap between the dispensing nozzle tip and the substrate) plays a crucial role in the dispensing volume and especially when the feature size gets smaller or thin lines are printed. For these types of features the nozzle tip needs to be closer to the substrate. This will increase the flow resistance and thus reduce the flow rate. It is expected that the pressure drop will be dominated by the dispensing gap when the gap is 50% smaller than the tip size. By applying the above mentioned CFD (Computational Fluid Dynamic) model at various dispensing heights (Figure 2), the flow rates were calculated [5].
Figure 2. Schematic drawing of the CFD model.
The pressure drop with different dispensing heights is plotted in the Figure 3. At a very small gap (Figure 3a), the pressure
drop is dominated by the substrate. At a large gap (Figure 3c), the pressure drop is mainly determined by the tip orifice.
There is a transient region (Figure 3b) where the pressure drop is affected by both of them.
Figure 3. Pressure drop vs. different dispensing height. (a) 5 microns. (b) 15 microns. (c) 30 microns.
The flow rate vs. dispensing height is plotted in the Figure 4. It can be seen that the flow rate increases to a steady state value at the dispensing height that is proportional to the value of the pen tip diameter. The pressure moves the steady state flow rate with the lowest pressure achieving steady state the fastest. It is also obvious that the flow rate is sensitive to a change in dispensing heights if they are below a certain value (50 microns in this case). The lower the dispensing height, the more it affects the flow rate.
Figure 4. Flow Rate versus Dispense Height
Page 2 of 3
Suggested Items
Delvitech to Officially Present Hybrid AOI + SPI Horus System at IPC APEX EXPO 2025
02/06/2025 | DelvitechDelvitech is happy to announce that it will showcase its groundbreaking Horus system, the industry's first all-in-one AI native platform for both Automatic Optical Inspection (AOI) and Solder Paste Inspection (SPI), at the upcoming IPC APEX EXPO 2025. The event is scheduled from March 18 to 20, 2025, at the Anaheim Convention Center in Anaheim, California.
Dr. Jennie Hwang to Deliver Two PDCs at IPC APEX EXPO
02/04/2025 | Dr. Jennie HwangDr. Jennie Hwang, chair of the AI Committee of National Academies/DoD AI study, Chair of National AI Institute of NSF, and Committee of Strategic Thinking for Engineering Research in the Era of Artificial Intelligence of NSF, brings broad-based information and insights through an integrated perspective to the AI course.
TopLine Bringing Answers, New Ideas to APEX 2025
02/04/2025 | TopLineTopLine® Corporation’s engineers will discuss groundbreaking technologies and product solutions at the upcoming IPC APEX EXPO 2025 this coming March 18-20 at the Anaheim Convention Center in California.
Solderstar to Present Advanced Profiling Solutions at IPC APEX EXPO 2025
02/04/2025 | SolderStarSolderstar, a leading provider of profiling solutions for the electronics manufacturing industry, will exhibit at IPC APEX EXPO 2025, which will take place March 18-20, 2025, at the Anaheim Convention Center in California.
Rehm Thermal Systems: Future Technologies for Coating, Dispensing and Vapour Phase Soldering Live at IPC APEX EXPO 2025
02/04/2025 | Rehm Thermal SystemsIPC APEX EXPO 2024, which takes place from 18 to 20 March at the Anaheim Convention Center in California, is the largest and most important trade fair for electronics manufacturing in North America.