-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Solder Paste Stencil Design for Optimal QFN Yield and Reliability
April 29, 2015 | Ben Gumpert, Lockheed MartinEstimated reading time: 13 minutes
Abstract
The use of bottom terminated components (BTC) has become widespread, specifically the use of Quad Flat No-lead (QFN) packages. The small outline and low height of this package type, improved electrical and thermal performance relative to older packaging technology, and low cost make the QFN/BTC attractive for many applications.
Over the past 15 years, the implementation of the QFN/BTC package has garnered a great amount of attention due to the assembly and inspection process challenges associated with the package. The difference in solder application parameters between the center pad and the perimeter pads complicates stencil design, and must be given special attention to balance the dissimilar requirements.
The lack of leads on the QFN/BTC package and the low standoff height result in significantly less compliance relative to other package types, making the QFN/BTC package more susceptible to CTE mismatch issues. Careful assembly of QFNs and proper printed circuit board (PCB) design can result in acceptable reliability depending on the overall design. One area that has not been well addressed, however, is the impact of die to package size ratio, and how this factor should be considered in circuit card assembly. IPC-7093 mentions the inverse relationship between relative die size and reliability, and Syed and Kang found the relationship to be non-linear, yet die size is seldom noted in component datasheets, and vendor recommendations do not include this ratio as a factor in assembly.
In this study, the volume of solder used in assembly of two QFN/BTC packages will be varied to investigate the relationship between standoff height and thermal cycle life, and to determine acceptable process limits with respect to first-pass yields. The QFNs selected have dissimilar die to package size ratios to assess the impact of this factor on the process window. Solder joint defect levels and thermal cycle results will indicate the ability to adjust manufacturing parameters to achieve a balance between the two objectives of process yield and reliability. The results will define a process window that provides the optimal installation of these packages.
Introduction
A wealth of information is available for optimizing PCB design and assembly for QFN packages, and this industry knowledge has been well cataloged in IPC-7093 [1]. This guideline reflects the recommendations found in many of the major component vendor application notes [2-8]. These documents all agree with respect to the typical target conditions for the solder joint; a standoff height of 2-3 mils, which is generally achieved by printing 1:1 on the perimeter lands and with a 20%-50% reduction of solder paste coverage on the center pad (although some vendors give more specific recommendations within this range of solder reduction on the center pad). These parameters will generally provide a high first-pass yield while providing for a relatively robust joint. The trade-offs for adjusting solder paste are also often mentioned; decreasing the volume of solder paste can reduce solder defects such as bridging but can negatively impact reliability, while increasing solder volume can do the opposite. Significant increases to the solder volume, however, can cause the component to float, potentially creating opens or misalignment.
One QFN/BTC property that is briefly mentioned in IPC-7093 and which been demonstrated to have a significant impact on QFN reliability is die size, or die to package ratio [9-11]. Component datasheets do not typically include information on the size of the die, but a sample of QFNs from several component vendors exhibited die to body ratios ranging from 0.27 to 0.58.
For the circuit card assembler, most of the decisions related to ensuring the best potential reliability of the QFN package have already been determined through design of the component package itself and of the PCB footprint. Once the design makes it to the point of assembly, the assembler has limited options to impact reliability, and these are dominated by stencil design (to affect standoff height and solder joint configuration). Standoff height can be controlled in several ways (bumping, use of preforms, stencil modification). Although standoff height is one of the standard recommendations from IPC-7093 and component vendors (2-3 mil), fillet formation is also recommended [10-13]. Kim et al. [12] concluded that a large fillet was preferred when increasing stand-off height of the component which was achieved at the expense of the fillet size.
Given the number of characteristics related to QFNs and their implementation that can impact reliability, it is unclear whether an assembler can apply a standard set of rules for installing QFNs onto a PCB, or if they must be evaluated on a case by case basis. Should the assembler adjust stencil apertures based on other design criteria, or should the standard 20-50% reduction of solder on the center pad be followed regardless, and if so, what value in that range is most desirable? Or should a greater reduction of solder paste be applied such that stand-off height is sacrificed to ensure large, convex fillets?
In this study, two QFN/BTC packages were evaluated for robustness of solder joints relative to changes to solder joint height controlled by center pad solder paste reduction. Extreme levels of solder variation (outside of the typical 20-50% reduction) were employed to demonstrate the amount of influence this factor may have and the points at which assembly defects may become important.
Experimental Procedure
The PWB selected for this study is a commercially available QFN/BTC style package test board. The board is constructed of FR-4 epoxy laminate, is two-sided (although only one side will be used in this study), is 0.062 inch thick, and has a HASL finish over copper. Approximate X-Y CTE is 11-13 ppm/°C. Two QFN style component packages will be used. These components have daisy chain circuitry to match the PWB, and have the parameters shown in Table 1.
Page 1 of 4
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Dr. Jennie Hwang to Present on ‘Solder Joint Reliability’ at SMTA International 2025
09/03/2025 | Dr. Jennie HwangDr. Jennie Hwang to address “Solder Joint Reliability” at the 2025 SMTA International Conference on Monday, October 20. Leveraging her decades of extensive real-world experiences and deep knowledge,
Indium to Highlight Energy-Efficient, High-Reliability Solder Solutions for EV and Electronics at Productronica India
09/03/2025 | Indium CorporationIndium Corporation, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, electric vehicle (EV), thin-film, and thermal management markets, will feature a range of sustainable, high-reliability solder products at Productronica India, to be held September 17-19 in Bengaluru, India.
Altus Supports Datalink Electronics with Advanced Selective Soldering Solution to Boost Manufacturing Efficiency
09/02/2025 | Altus GroupDatalink Electronics has partnered with Altus Group to integrate a cutting-edge automated soldering solution, enhancing its production capabilities and reinforcing its strategic focus on quality, automation, and scalability.
Connect the Dots: How to Avoid Five Common Causes of Board Failure
09/03/2025 | Matt Stevenson -- Column: Connect the DotsBoards fail for various reasons, and because I’ve been part of the PCB industry for a long time, I’ve seen most of the reasons for failure. As part of my ongoing crusade to help designers design for the reality of manufacturing, here are five common causes for board failure and how to avoid them.
More Than a Competition: Instilling a Champion's Skill in IPC Masters China 2025
09/01/2025 | Evelyn Cui, Global Electronics Association—East AsiaNearly 500 elite professionals from the electronics industry, representing 18 provinces and municipalities across China, competed in the 2025 IPC Masters Competition China, March 26–28, in Pudong, Shanghai. A total of 114 contestants advanced to the practical competition after passing the IPC Standards Knowledge Competition. Sixty people competed in the Hand Soldering and Rework Competition (HSRC), 30 in the Cable and Wire Harness Assembly Competition (CWAC), and 24 in the Ball Grid Array/Bottom Termination Components (BGA/BTC) Rework Competition.