-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Design and Manufacture of High-Voltage Electronics
July 27, 2015 | Pete Starkey, I-Connect007Estimated reading time: 4 minutes
“With footprint becoming an ever-increasing issue, demands on high voltage electronics design and manufacture are becoming ever more difficult to manage. Decreasing size demands and HV requirements for creepage clearances and separation are at odds with each other, meaning that modern methods need to be refined in order to maintain performance and push the boundaries of current technical requirements.”
This SMART Group webinar, presented by Ian Lake, director of engineering at Applied Kilovolts Ltd, and moderated by Bob Willis, explored the current technical barriers faced in high-voltage electronics design and manufacturing processes. Although he made it clear that within the timeframe of a webinar session he could only scratch the surface of the topic, Lake gave a valuable insight into basic concepts and drivers and set a perspective on current state of the art and future trends.
Against a background of expectation that electronic designs would continue to get smaller, the rules of physics remained, and high voltages would continue to require creepage, clearance and insulation. The concerns were the effects of high-voltage breakdown, whether immediate or latent, on reliability and performance, and the effects of partial discharge and corona on the degradation of insulation. A set of rules was needed to facilitate the creation of designs which combined manufacturability and reliability, whilst managing creepage, clearance and insulation stress, backed up by standards such as EN/UL61010, EN/UL60601 and IPC-222, and best practice in manufacturing.
Defining “creepage” as the shortest path between conductors along the surface and “clearance” as the shortest path through air, Lake demonstrated how values depended on transient voltages and the comparative tracking index of the material, and gave numerical examples from EN61010.
Considering the electrical breakdown of insulating materials, which occurred when their dielectric strength was exceeded, he listed dielectric strengths of common materials and resins. A typical value for FR-4 rigid laminate was 20kV/mm, for Kapton flexible laminate 22kV/mm and for PTFE 50-170kV/mm. The dielectric strength of air was approximately 3.4kV/mm, but this varied with pressure according to Paschen’s Law. Actual breakdown voltage was heavily dependent on test conditions and thickness of sample; remarkably, thin films had much higher dielectric strengths although Lake admitted that he did not have the physics to explain why. It was clear that choice of materials for PCB substrates was critical.
The distribution of voltage between the electrodes depended on their geometry, and Lake’s illustrations with contour maps of equipotential clearly demonstrated the difference between smooth and pointed conductors. Finite element analysis software was available, which enabled analysis of voltage distribution and stresses in insulation systems with different dielectric constants. Plotting electrical field strength in kV/mm gave useful information when comparing electrodes of different geometries, and could indicate areas susceptible to corona and subsequent breakdown, driven by maximum field strength. Field strengths greater than 3kV/mm could cause local ionisation of air, with corrosive by-products that contributed to breakdown of materials.
When designing printed circuit boards for high-voltage applications, pad shape was critically important if field strength was to be kept to a minimum, and smoothly rounded pads were preferred. Conformal coating added an insulating layer, reduced peak field strength, protected conductors from contaminants and moisture, and reduced corona. And as previously stated, thin films of conformal coat could have remarkably high dielectric strength.
As high-voltage designs became more compact, with greater functionality packed into smaller spaces, additional precautions were necessary to minimise electrical stress and avoid breakdown. As well as rounded pads and shaped electrodes, conformal coating materials needed to be carefully chosen, and surface preparation and adhesion became critical factors. In particular, it was essential that conformal coatings were void-free, since partial discharge could occur in voids in areas of high field strength, producing ozone which could damage insulation and cause progressive breakdown.
From the point of view of assembly, component positioning was obviously an important consideration, with solder joints as smooth as possible. Cleanliness was crucial for reliability, since contaminants could have a lower breakdown voltage than the PCB material and could absorb moisture. So it was essential not only to clean assemblies meticulously but also to verify cleanliness by ionic contamination and residue testing. As with conformal coating, any potting or encapsulating material should be applied only to clean, dry surfaces and be void-free, using de-gassed material and processing under vacuum if necessary. A wide range of potting compounds was available, typically based on epoxy resins, silicone rubbers or polyurethanes, and many factors influenced the choice of material for a particular job, including ease of processing, mechanical and electrical strength, thermal conductivity and temperature rating. A good understanding of processing parameters and the use of appropriate mixing and dispensing equipment were obvious prerequisites.
Lake summarised by emphasising that although they were “just another area of electronics,” high-voltage products needed specialist design rules and a clear understanding of key process drivers. Whilst some specialist techniques were involved, successful manufacturing depended on carefully validated processes with effective control and monitoring.
About the SMART Group
The SMART Group Aims to Promote the Advancement of the Electronics Manufacturing Industry through the Education, Training and Notification of its Members in Surface Mount and Related Assembly Technologies, and by the Promotion of a Community of Electronics Manufacturing Professionals.
This is to be Accomplished by Active Encouragement of Member Inter-activity, through Meetings, Seminars, Conferences and Publication of Technical Information. The SMART Group Invites and Requires the Active Participation of all its Members in these Aims.
Suggested Items
Indium Technical Expert to Present at SiP Conference China
11/25/2024 | Indium CorporationIndium Corporation Senior Area Technical Manager for East China Leo Hu is scheduled to deliver a presentation on Low-Temperature Solder Material in Semiconductor Packaging Applications at SiP China Conference 2024 on November 27 in Suzhou, China.
Indium Corporation to Showcase Precision Gold Solder Solutions at MEDevice Silicon Valley 2024
11/18/2024 | Indium CorporationIndium Corporation® will feature its high-reliability AuLTRA® MediPro gold solder solutions at MEDevice Silicon Valley, taking place on November 20-21 in Silicon Valley, California. AuLTRA® MediPro is a family of high-performance, precision gold solder solutions for critical medical applications.
AIM to Highlight NC259FPA Ultrafine No Clean Solder Paste at SMTA Silicon Valley Expo & Tech Forum
11/14/2024 | AIMAIM Solder, a leading global manufacturer of solder assembly materials for the electronics industry, is pleased to announce its participation in the upcoming SMTA Silicon Valley Expo & Tech Forum taking place on December 5 at the Fremont Marriott Silicon Valley in Fremont, California.
Data-driven Precision in PCBA Manufacturing
11/13/2024 | Julie Cliche-Dubois, CogiscanThe intricacies involved in electronics manufacturing require more than just expensive equipment and skilled technicians; they necessitate an accurate understanding of the entire production flow, informed and driven by access and visibility to reliable data.
Rehm Thermal Systems Mexico Wins the Mexico Technology Award 2024 in the Category Convection Soldering
11/13/2024 | Rehm Thermal SystemsRehm Thermal Systems Mexico has won the Mexico Technology Award in the category convection soldering with the patented mechatronic curtain for convection soldering systems.