-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Localized Contamination Can Cause Big Problems
July 30, 2015 | Terry Munson, Foresite Inc.Estimated reading time: 2 minutes
In today's electronics manufacturing environment, assemblers continue to overlook areas of localized contamination that are capable of causing product failures. By neglecting to examine especially sensitive, critical, or tightly packed areas on an assembly, opportunities for electrochemical failures loom.
The following case study involves a customer seeing visible, white residue and dendritic growth in a connector area. Fortunately, the residue was visible, which alerted them to investigate the source and implications of the residue. Often, residues are invisible and can go unnoticed until field problems occur.
Case study
One assembly sample was sent to our laboratory for analysis to help troubleshoot this problem. In this project, we utilized FTIR, SEM/EDX and ion chromatography (IC) analyses. FTIR only identified flux residues. SEM/EDX revealed concentrations of tin, lead, oxygen and copper.
We concluded, due to the high concentrations of tin and lead, that electromigration was occurring in this area, creating the visible white residue and dendritic growth. Based on this finding, we analyzed the white residue area with IC using C3 (Critical Cleanliness Control) in order to identify the contaminants present and to better understand the impact of the manufacturer's processes.
The C3 enabled us to extract residue samples from 0.1 in2 areas on both the connector and its casing, plus reference areas near both sites. The C3 quickly showed "Dirty" test results for the connector and casing areas with the white residue. Tests on the connector and casing reference areas (no visible white residue) with the C3 read "Clean". IC analysis on these four C3 localized extractions indicated high levels of chloride, sulfate and weak organic acid (WOA) flux residues on the two areas with white residue; low, acceptable levels of ionic residue species on the two reference area samples.
Conclusions
We suspected that an external fluid contaminant had been introduced to the assembly at some point, causing the white residue and dendrites. Visual inspection of the board revealed that the white residue was in a line, suggesting a drip—possibly caused by tap water, which tends to be high in chloride and sulfate.
Recommendations
We recommended to this customer to monitor their processes, especially looking for the source of an external fluid contaminant—the cause of this reliability issue.
This is just one of numerous cases we have seen in our lab that demonstrate the importance of evaluating the cleanliness of specific, local areas of the board and/or assembly. Since the tested reference areas were acceptably clean and the vast majority of the assembly was free of the visible residue, standard industry test methods (bulk extraction), such as ROSE testing, would not identify specific, potential problem areas – the test result is an average cleanliness level for the entire assembly.
With passing (ROSE) test results, the presence of the white residue could be interpreted as not threatening product reliability – a benign situation. Actually, the residue in this case was highly corrosive and already causing product problems that would only intensify in use. Localized extraction methods can lead to identification of problem areas in an assembly, even before residues become visible or dendrites appear.
The C3 automatically, as part of a programmed cycle, extracts a sample from a selected, small (0.1 in2), product location of interest. Localized extraction is a significant advancement in electronics manufacturing quality control.
Terry Munson is the founder and president of Foresite Inc. Terry has extensive experience with how cleanliness issues are affecting product reliability for electronic hardware. He is the primary developer of ion chromatography analysis for use in the electronics manufacturing industry and is an active member in the IPC.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Building Electronics Excellence in India
09/08/2025 | Nolan Johnson, SMT007 MagazineFor over two decades, Dave Bergman has helped steer the Global Electronics Association’s work in India, from a single training course to a thriving regional operation with deep government and industry ties. In this interview, Dave explains how the group went from partnering with IPCA to opening its own office in 2010, creating India’s first domestic electronics manufacturing standard, and securing funding for dozens of Indian companies to attend U.S. trade shows.
New Podcast Episode Drop: MKS’ Atotech’s Role in Optimize the Interconnect
09/08/2025 | I-Connect007In this episode of On the Line With…, host Nolan Johnson sits down with Patrick Brooks, MKS' Atotech's Global Product Director, EL Systems, to discuss the critical role that wet processes play alongside laser systems in advancing the Optimize the InterconnectSM initiative. Brooks points to Bondfilm as a key example—a specialized coating that enables CO₂ lasers to ablate more effectively than ever before.
The Global Electronics Association Hosts Successful WorksAsia-AI and Factory of the Future Technical Seminar
09/03/2025 | Global Electronics AssociationOn August 22, 2025, the Global Electronics Association hosted the successful WorksAsia-AI and Factory of the Future Technical Seminar during the exhibition Automation Taipei 2025. The seminar brought together 81 representatives from 58 companies, focusing on the latest applications of AI in smart factories and unveiling four key directions that will drive the electronics industry’s transition toward intelligence and sustainability.
TRI's AI-Powered Inspection Solutions at SMTAI 2025
09/02/2025 | TRITest Research, Inc. (TRI), the leading provider of test and inspection systems, will be joining the SMTA International Exposition & Conference. The event will be held from October 21 – 23, 2025, at the Donald E. Stephens Convention Center in Rosemont, IL, USA.
More Than a Competition: Instilling a Champion's Skill in IPC Masters China 2025
09/01/2025 | Evelyn Cui, Global Electronics Association—East AsiaNearly 500 elite professionals from the electronics industry, representing 18 provinces and municipalities across China, competed in the 2025 IPC Masters Competition China, March 26–28, in Pudong, Shanghai. A total of 114 contestants advanced to the practical competition after passing the IPC Standards Knowledge Competition. Sixty people competed in the Hand Soldering and Rework Competition (HSRC), 30 in the Cable and Wire Harness Assembly Competition (CWAC), and 24 in the Ball Grid Array/Bottom Termination Components (BGA/BTC) Rework Competition.