-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAll About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Flex Circuit Shielding Design Options
October 22, 2015 | Mike Morando, PFC Flexible CircuitsEstimated reading time: 4 minutes
In December of 2014 I visited the Radiological Society of North America (RSNA) conference in Chicago. As you can imagine, MRI and X-ray equipment filled the convention center. Attending the show gave me the opportunity to speak to radiology designers. Since the equipment they are designing “radiates” with waves of electrons, the underlying electronics have to be super protected for fear of interference. When discussing flex designs, EMI and shielding circuits is the number one design concern.
Shielding may not be your company’s number one design concern when thinking about your interconnect designs. But if you have to shield circuits for EMI, then you will need to depend on your supplier to assist you with their favorite shielding technique and experience.
The Basics: What is EMI and Do Flex Circuits Radiate?
Electromagnetic radiation that adversely affects circuit performance is generally termed EMI, or electromagnetic interference. Many types of electronic circuits are susceptible to EMI and must be shielded to ensure proper performance. Conversely, emissions radiating from sources inside electronic equipment may threaten circuits within the same or nearby equipment.
To protect the performance integrity of electronic equipment, electromagnetic emissions from commercial equipment must not exceed levels set by the FCC, VDE and other organizations. Shielding requirements for commercial electronics generally range from 40–60 dB. Finding a system's overall shielding needs involves determining the radiated emission spectrum of the equipment, and the specifications the unit must meet (e.g. FCC Part 15).
And yes, flex circuits will radiate.
What is EMI shielding?
Shielding is the use of conductive materials to reduce radiated EMI by reflection and/or absorption. Shielding can be applied to different areas of the electronic package from equipment enclosures to individual circuit boards or devices. Effective placement of shielding causes an abrupt discontinuity in the path of electromagnetic waves. At low frequencies, most of the wave energy is reflected from a shield's surface, while a smaller portion is absorbed. At higher frequencies, absorption generally predominates. Shielding performance is a function of the properties and configuration of the shielding material (conductivity, permeability and thickness), the frequency, and distance from the source to the shield.
Flex shielding methodology
Shielding a flex circuit can be accomplished through multiple methods. Shields are designed and used for EMI and ESD considerations as well as signal integrity methodology. Here are some common and not so common practices for shielding a flex circuit.
- Copper-clad—adding additional copper layers to the circuit—the least flexible method.
Figure 1: Very thick outside copper layers supressing radiation.
- Copper cross hatch—adding additional copper layers and etching them to create a cross hatch design which allows more flexibility than standard copper-clad layers. Benefit: More flexible than pure copper layers.
Figure 2: Outer layer cross hatch for EMI suppression. Benefit: More flexible than pure copper layers.
- Silver paste/epoxy—achieved by applying a conductive paste over the outer layers of a circuit. The Kapton® covercoat has holes. Silver paste is sprayed on the covercoat and the silver paste drains down the holes and makes contact with the copper ground inside the circuit. This technique allows a slightly more flexible design than the copper-clad solution mentioned above. Benefit: More flexible. Downside: higher cost.Page 1 of 2
Suggested Items
Happy’s Tech Talk #40: Factors in PTH Reliability—Hole Voids
07/09/2025 | Happy Holden -- Column: Happy’s Tech TalkWhen we consider via reliability, the major contributing factors are typically processing deviations. These can be subtle and not always visible. One particularly insightful column was by Mike Carano, “Causes of Plating Voids, Pre-electroless Copper,” where he outlined some of the possible causes of hole defects for both plated through-hole (PTH) and blind vias.
Trouble in Your Tank: Can You Drill the Perfect Hole?
07/07/2025 | Michael Carano -- Column: Trouble in Your TankIn the movie “Friday Night Lights,” the head football coach (played by Billy Bob Thornton) addresses his high school football team on a hot day in August in West Texas. He asks his players one question: “Can you be perfect?” That is an interesting question, in football and the printed circuit board fabrication world, where being perfect is somewhat elusive. When it comes to mechanical drilling and via formation, can you drill the perfect hole time after time?
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.