Elastomeric Transistor with Softness and Robustness Comparable to Cloth
November 12, 2015 | AISTEstimated reading time: 4 minutes
Points
- The transistor is made only from elastomeric materials, such as single-walled carbon nanotubes, rubbers, and gel.
- The transistor can maintain its performance when stretched, bent, compressed, or struck, as every component deforms integrally.
- Potential applications are medical sensing systems and the skin of personal care robots.
Summary
Atsuko Sekiguchi (Senior Researcher) and Fumiaki Tanaka (former AIST Postdoctoral Researcher) of CNT Application Development Team, the CNT-Application Research Center (Director: Kenji Hata), the National Institute of Advanced Industrial Science and Technology (AIST; President: Ryoji Chubachi), have developed a transistor that shows softness and robustness comparable to cloth and will endure a wide range of loads (stretching, bending, twisting, compressing, and impact).
The transistor does not use hard materials such as metals and oxides, and is made only from soft carbon-based materials such as single-walled carbon nanotubes (SWCNTs), rubber, and gel; this allows all materials to be integrally deformed in response to the applied load. When the transistor is attached to a piece of clothing and worn, it will become a part of the fabric and fit the human body, causing little stress on the body. In future, it is expected to be applied to human-monitoring electronics in the medical field, such as biological sensing systems and the skin of personal care robots.
Social Background of Research
Electronic devices with softness comparable to cloth could realize the monitoring system of health status (e.g. pulse, presence or absence of arrhythmia, and skin temperature) in everyday life without causing too much stress on the human body. However, it has been difficult so far to realize a device that shows both softness and robustness, because conventional electronic devices are made from hard materials such as metal, oxide, and alloy.
History of Research
AIST has been focusing on the elastic properties of SWCNTs of network structure and has developed a conductive SWCNT rubber composite (AIST press release on October 12, 2011) and a SWCNT rubber composite with highly accurate moldability (AIST press release on August 28, 2013). In addition, because SWCNTs have metallic and semiconductor properties, AIST has also developed a technique for selectively separating out semiconductive SWCNTs that can function as transistors (AIST press release on May 11, 2011).
In the present study, the researchers utilized the electrical properties and elastic behavior of the SWCNTs of network structure in order to develop a transistor made only from elastomeric materials: they used the conductive SWCNT rubber composite as the electrodes and semiconductive SWCNTs as the channel.
Part of this study was supported by a research topic “Functional integrated CNT flexible nano MEMS devices fabricated by self-assembling processes” (Fy2009 - FY2013) included in the CREST research area Creation of Nanosystems with Novel Function through Process Integration of the Japan Science and Technology Agency.
Details of Research
The developed side gated transistor is schematically shown in Fig. 1 (top left). The source, drain, and gate electrodes are made from the conductive SWCNT rubber composite; the channel is semiconductive SWCNTs; the dielectric layer is an ion gel; and the substrate is silicone rubber. All constituent materials possess mechanical properties similar to cloth and no hard metal nor oxide was used. Characteristics of the transistor are shown Fig.1 (right). The on-current is –50 µA and the on/off ratio is 104, which are comparable to those of previously reported flexible transistors.
Figure 1: Schematic illustration of the transistor (top left), the constituent elements (bottom left), and its performance (right)
Page 1 of 2
Suggested Items
Taiwan's PCB Industry Chain Is Expected to Grow Steadily by 5.8% Annually in 2025
05/05/2025 | TPCAAccording to an analysis report jointly released by the Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute's International Industrial Science Institute, the total output value of Taiwan's printed circuit (PCB) industry chain will reach NT$1.22 trillion in 2024, with an annual growth rate of 8.1%.
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Exceeds Quarterly Profit Expectations as Electronics Segment Benefits from Semiconductor Demand
05/05/2025 | I-Connect007 Editorial TeamDuPont reported higher-than-expected earnings for the first quarter of 2025, supported by increased demand in its electronics and industrial segments. The company’s adjusted earnings per share came in at 79 cents, surpassing the average analyst estimate of 65 cents per share, according to data from LSEG.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.