Elastomeric Transistor with Softness and Robustness Comparable to Cloth
November 12, 2015 | AISTEstimated reading time: 4 minutes
The Young’s modulus and the elastic limit of the consitutent materials of the transistor, as well as variety of metals, plastics, and fabrics are summarized in the Fig.2, as indices of flexibility and toughness. Young’s modulus is the ratio of the stress to the strain and indicates how soft the material is. The elastic limit is the maximum strain under which the material can keep reversible stretchability and flexibility and indicates how stretchable it is. Figure 2 indicates all the constituent materials of the transistor (the conductive SWCNT rubber composite, the ion gel, and the silicone rubber) possess softness and robustness similar to those of fabrics.
Figure 2: The Young’s modulus and the elastic limit for each of the constituent materials of the transistor and various other materials
Figure 3 shows the characteristics of the transistor before and after being stepped on by a high-heeled shoe (pressure: about 2.5 MPa). Because all of the materials deformed integrally, the concentration of stress, strain, etc. at the interface was reduced and almost no change was observed in the characteristics of the transistor (e.g. in the on-current and the on/off ratio) after being stepped. The transistor did not break and continued to maintain its characteristics, despite being subjected to this large amount of pressure—possibly one of the most severe loads it may be exposed to in everyday life.
Figure 3: The transistor being “stepped on” by the heel of a high-heeled shoe (main photo), and its performance before and after the event (inset)
Future Plans
The researchers plan to combine the transistor with flexible sensors and flexible energy devices to develop a human-monitoring system such as a human body-pressure distribution-sensing system for medical use. Their goal is to develop human-friendly electronic devices that can be worn just like clothes and place no burden on the human body.
Page 2 of 2Suggested Items
Taiwan's PCB Industry Chain Is Expected to Grow Steadily by 5.8% Annually in 2025
05/05/2025 | TPCAAccording to an analysis report jointly released by the Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute's International Industrial Science Institute, the total output value of Taiwan's printed circuit (PCB) industry chain will reach NT$1.22 trillion in 2024, with an annual growth rate of 8.1%.
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Exceeds Quarterly Profit Expectations as Electronics Segment Benefits from Semiconductor Demand
05/05/2025 | I-Connect007 Editorial TeamDuPont reported higher-than-expected earnings for the first quarter of 2025, supported by increased demand in its electronics and industrial segments. The company’s adjusted earnings per share came in at 79 cents, surpassing the average analyst estimate of 65 cents per share, according to data from LSEG.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.