Disruptive Impact of Fan-out WLP Growth Coming for Electronics Industry
November 17, 2015 | TechSearchEstimated reading time: 1 minute
Fan-out wafer level packaging (FO-WLP) is a disruptive technology that will have a significant impact on the electronics industry in the coming years. WLP has seen strong growth, especially in the mobile devices, because it provides a low-profile package that meets the requirements of many smartphone makers. Billions of WLPs are shipped each year and FO-WLP adoption will drive the number even higher. In its new report, TechSearch International projects an 87% CAGR for FO-WLPs in unit volumes over the next 5 years.
As companies move to the next semiconductor technology node, smaller die are possible, allowing a greater number of die per wafer. At the same time the number of I/Os is increasing, and to route them a conventional WLP would require small diameter solder balls with fine pitch. Qualcomm has published information on the reliability challenges of going to ≤0.35mm pitch with a conventional fan-in WLP.
FO-WLP is an attractive solution that allows companies to continue taking advantage of the powerful economics of die shrink, while also meeting the small form factor, low-profile package requirements of mobile devices. FO-WLP is disruptive technology because there is no substrate and thin-film metallization is used for interconnect instead of bumps or wires. In the case of a face-up process, the die has a thick Cu post, but not a Cu pillar with a solder cap. The use of redistribution layers patterned with semiconductor technology makes it possible to achieve much finer feature sizes ≤5µm lines and spaces, than conventional organic substrate technologies.
With the use of FO-WLP for the logic bottom package in a package-on-package (PoP) configuration, the ultra thin target of <0.8mm PoP can be met. The only lower-profile PoP with memory and logic is a 3D IC memory and logic stack using through silicon vias (TSVs). Such an approach is costly, however and there are no thermal solutions for this stack in mobile applications.
Suggested Items
SHENMAO Strengthens Semiconductor Capabilities with Acquisition of PMTC
07/10/2025 | SHENMAOSHENMAO America, Inc. has announced the acquisition of Profound Material Technology Co., Ltd. (PMTC), a premier Taiwan-based manufacturer of high-performance solder balls for semiconductor packaging.
KYZEN to Highlight Understencil and PCB Cleaners at SMTA Querétaro Expo and Tech Forum
07/09/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, will exhibit at the SMTA Querétaro Expo & Tech Forum, scheduled to take place Thursday, July 24, at Centro de Congresos y Teatro Metropolitano de Querétaro.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Hands-On Demos Now Available for Apollo Seiko’s EF and AF Selective Soldering Lines
06/30/2025 | Apollo SeikoApollo Seiko, a leading innovator in soldering technology, is excited to spotlight its expanded lineup of EF and AF Series Selective Soldering Systems, now available for live demonstrations in its newly dedicated demo room.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A