3D 'Nanobridges' Formed Using Electron Beam Writing
December 22, 2015 | Georgia TechEstimated reading time: 5 minutes
Researchers have demonstrated a new process for rapidly fabricating complex three-dimensional nanostructures from a variety of materials, including metals. The new technique uses nanoelectrospray to provide a continuous supply of liquid precursor, which can include metal ions that are converted to high-purity metal by a focused electron beam.
The new process generates structures that would be impossible to make using gas-phase focused electron beam-induced deposition (FEBID) techniques, and allows fabrication at rates up to five orders of magnitude faster than the gas-phase technique. And because it uses standard liquid solvents, the new process could take advantage of a broad range of precursor materials. Multiple materials can also be deposited simultaneously.
“By allowing us to grow structures much faster with a broad range of precursors, this technique really opens up a whole new direction for making a hierarchy of complex three-dimensional structures with nanoscale resolution at the rate that is demanded for manufacturing scalability,” said Andrei Fedorov, a professor in the George Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. “This could provide a fundamental shift in the way this field will go.”
The research was supported by the U.S. Department of Energy’s Office of Science and reported in the journal Nano Letters. Applications for the rapid electron beam writing of topologically complex 3D nanostructures could include new types of electrode topologies for batteries and fuel cells, vertically-stacked electronic memory, substrates for controlling cell differentiation and tiny electrochemical conversion devices.
In the established FEBID process, an electron beam is used to write structures from molecules adsorbed onto a solid surface that provides support and nucleation sites for deposit growth. The precursors are introduced into the high-vacuum electron microscope chamber in gas phase. High-energy electrons in the beam interact with the substrate to produce the low-energy secondary electrons, which dissociate the adsorbed precursor molecules, resulting in deposition of solid material onto the substrate surface.
Though it enables precise atom-by-atom fabrication of nanostructures, the process is very slow because the low density of adsorbed gas molecules in the vacuum environment limits the amount of material available for fabrication. And structures must be fabricated from the substrate surface up at continually decreasing growth rate and from a limited number of precursor gases available.
Page 1 of 3
Suggested Items
KYZEN to Spotlight Stencil Cleaning Solutions at SMTA Oregon
05/02/2025 | KYZEN'KYZEN, the global leader in innovative environmentally friendly cleaning chemistries, will exhibit at the SMTA Oregon Expo & Tech Forum, scheduled to take place on Tuesday, May 20 at the Wingspan Event and Conference Center in Hillsboro, OR. KYZEN’s cleaning expert Jeff Deering will be on-site at the expo providing information about stencil cleaning chemistries, including KYZEN E5631J.
LG Innotek to Build FC-BGA into 700 Million USD Business with State-of-the-art Dream Factory
05/01/2025 | PR NewswireLG unveiled the Dream Factory, a hub for the production of FC-BGAs (Flip Chip Ball Grid Arrays), the company's next-generation growth engine, to the media for the first time and announced it on the 30th April.
Driving Innovation: Registration in PCB Production Throughout the Process
05/05/2025 | Simon Khesin -- Column: Driving InnovationPCB manufacturing is a fascinating industry where multiple disciplines—chemical, mechanical, and optical processes—intersect. Each field plays a crucial role, and missing even one step can significantly impact production and yield. In the realm of mechanical and optical processes, one of the most critical aspects influencing the final result—especially in complex PCB designs—is registration.
Siemens, Intel Foundry Advance Collaboration
04/30/2025 | Siemens Digital Industries SoftwareSiemens Digital Industries Software announced that its continued collaboration with Intel Foundry has resulted in multiple product certifications, updated foundry reference flows, and additional technology enablement leveraging the foundry’s leading-edge technologies for next-generation integrated circuits (IC) and advanced packaging.
The Knowledge Base: Unlocking the Invisible—The Critical Role of X-ray Technology
04/29/2025 | Mike Konrad -- Column: The Knowledge BaseFrom detecting voids under BGAs to solder defects in high-reliability applications, X-ray inspection has become an indispensable tool in modern manufacturing. But how is the technology evolving? What challenges do experts face in deploying X-ray inspection effectively and what does the future hold for this critical quality assurance method?