3D 'Nanobridges' Formed Using Electron Beam Writing
December 22, 2015 | Georgia TechEstimated reading time: 5 minutes
The new process allows considerable flexibility in fabrication, opening the possibility of depositing more than one material simultaneously. That could allow production of alloys and composites, such as combinations of silver and gold. Or, one material could be used as a template to be coated by another material with the simple substitution of precursor materials.
So far, the Georgia Tech team has produced structures of silver and carbon, but the process could be used to fabricate a wide range of metallic and non-metallic nanomaterials. Metals produced using the technique can be highly pure because a carbon-producing precursor dissociation step can be mitigated.
The next step will be to understand the physics and chemistry governing the fabrication process to allow more precise control and to guide others who may wish to use it for their own specific applications.
“We expect that the role of the solvents is going to be very important in the kinds of kinetic pathways that we can control to produce many different kinds of structures with desired chemical make-up,” said Fedorov. “This gives us an opportunity to explore a regime of chemistry and physics that had previously been outside what we could study. We want to establish an understanding of the basic physics and chemistry of the process.”
Future work will include a study of how the interaction of beams with different energies, vacuum environments, solvents and concentrations of ionic species affect the outcome.
“We have demonstrated that we can electrospray liquid precursors inside a high vacuum environment of an electron microscope and then use electrons to facilitate useful chemical transformations,” said Fedorov. “We think this will enable scientists and engineers to make structures they had only been able to dream of before.”
Page 3 of 3Suggested Items
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
The Knowledge Base: A Conference for Cleaning and Coating of Mission-critical Electronics
07/08/2025 | Mike Konrad -- Column: The Knowledge BaseIn electronics manufacturing, there’s a dangerous misconception that cleaning and coating are standalone options, that they operate in different lanes, and that one can compensate for the other. Let’s clear that up now. Cleaning and conformal coating are not separate decisions. They are two chapters in the same story—the story of reliability.
SMT007 Magazine July—What’s Your Competitive Sweet Spot?
07/01/2025 | I-Connect007 Editorial TeamAre you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche—what are their insights? In the July 2025 issue of SMT007 Magazine, we spotlight companies thriving by redefining or reinforcing their niche and offer insights to help you evaluate your own.
Smarter Machines Use AOI to Transform PCB Inspections
06/30/2025 | Marcy LaRont, PCB007 MagazineAs automated optical inspection (AOI) evolves from traditional end-of-process inspections to proactive, in-line solutions, the integration of AI and machine learning is revolutionizing defect reduction and enhancing yields, marking a pivotal shift in how quality is managed in manufacturing.
Magnalytix and Foresite to Host Technical Webinar on SIR Testing and Functional Reliability
06/26/2025 | MAGNALYTIXMagnalytix, in collaboration with Foresite Inc., is pleased to announce an upcoming one-hour Webinar Workshop titled “Comparing SIR IPC B-52 to Umpire 41 Functional & SIR Test Method.” This session will be held on July 24, 2025, and is open to professionals in electronics manufacturing, reliability engineering, and process development seeking insights into new testing standards for climatic reliability.