New Hybrid Electrolyte For Solid-State Lithium Batteries
December 23, 2015 | Lawrence Berkeley National LaboratoryEstimated reading time: 3 minutes
The researchers also demonstrated that their hybrid electrolyte should be stable with two of the most promising next-generation cathode candidates that are being developed, sulfur and high-voltage cathodes such as lithium nickel manganese cobalt oxide.
“People would like to use 5-volt cathodes, but electrolytes that are stable against those 5-volt cathodes are not readily available,” Balsara said. “We have demonstrated this electrolyte is stable at 5 volts, though we have not incorporated the hybrid electrolyte in the cathode yet.”
Further experiments demonstrated that the hybrid electrolyte can be well suited to work with a sulfur cathode, which operates at a relatively low voltage but has the advantages of being high capacity and very inexpensive. A major failure mode in lithium-sulfur cells with conventional liquid electrolytes is the dissolution of intermediate compounds formed as sulfur in the cathode is converted to lithium sulfide into the electrolyte. However, the intermediates were found to be insoluble in the glass-polymer electrolyte.
“Although much work remains to be done, we believe that our work opens a previously unidentified route for developing hybrid solid electrolytes that will address the current challenges of lithium batteries,” the researchers wrote in the PNAS article.
Funding for the research at Berkeley Lab was provided by DOE’s Office of Science through the Joint Center for Energy Storage Research, a DOE Energy Innovation Hub. Part of the work was done at the Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory and at the Advanced Light Source at Berkeley Lab, both DOE Office of Science User Facilities.
Balsara was one of the co-founders of battery startup Seeo, founded in 2007 to develop a solid block copolymer electrolyte. Balsara and DeSimone have also co-founded a startup company called Blue Current, which aims to commercialize a perfluoropolyether-based nonflammable electrolyte they developed together.
Page 2 of 2Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/27/2025 | Nolan Johnson, I-Connect007While news outside our industry keeps our attention occupied, the big news inside the industry is the rechristening of IPC as the Global Electronics Association. My must-reads begins with Marcy LaRont’s exclusive and informative interview with Dr. John Mitchell, president and CEO of the Global Electronics Association. For designers, have we finally reached the point in time where autorouters will fulfill their potential?
The Chemical Connection: Through-glass Vias in Glass Substrates
06/24/2025 | Don Ball -- Column: The Chemical ConnectionThis month’s theme is vias and how best to ensure via quality and reliability. I don’t have much expertise in this process area or much to contribute that most of you don’t already know. However, I’ve recently become peripherally involved in a via technology that may be of more than academic interest to some of us. It entails putting vias in a material not usually associated with PCB manufacturing: through-glass vias (TGVs) in glass substrates.
Trouble in Your Tank: Causes of Plating Voids, Pre-electroless Copper
05/09/2025 | Michael Carano -- Column: Trouble in Your TankIn the business of printed circuit fabrication, yield-reducing and costly defects can easily catch even the most seasoned engineers and production personnel off guard. In this month’s column, I’ll investigate copper plating voids with their genesis in the pre-plating process steps.
Vuzix Acquires Advanced Waveguide R&D Facility in Silicon Valley to Strengthen Partnerships with Big Tech OEMs/ODMs
04/29/2025 | PRNewswireVuzix Corporation, a leading supplier of smart glasses, waveguides, and Augmented Reality (AR) technologies, today announced the acquisition of an advanced waveguide R&D facility in Milpitas, California.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.