New Hybrid Electrolyte For Solid-State Lithium Batteries
December 23, 2015 | Lawrence Berkeley National LaboratoryEstimated reading time: 3 minutes
The researchers also demonstrated that their hybrid electrolyte should be stable with two of the most promising next-generation cathode candidates that are being developed, sulfur and high-voltage cathodes such as lithium nickel manganese cobalt oxide.
“People would like to use 5-volt cathodes, but electrolytes that are stable against those 5-volt cathodes are not readily available,” Balsara said. “We have demonstrated this electrolyte is stable at 5 volts, though we have not incorporated the hybrid electrolyte in the cathode yet.”
Further experiments demonstrated that the hybrid electrolyte can be well suited to work with a sulfur cathode, which operates at a relatively low voltage but has the advantages of being high capacity and very inexpensive. A major failure mode in lithium-sulfur cells with conventional liquid electrolytes is the dissolution of intermediate compounds formed as sulfur in the cathode is converted to lithium sulfide into the electrolyte. However, the intermediates were found to be insoluble in the glass-polymer electrolyte.
“Although much work remains to be done, we believe that our work opens a previously unidentified route for developing hybrid solid electrolytes that will address the current challenges of lithium batteries,” the researchers wrote in the PNAS article.
Funding for the research at Berkeley Lab was provided by DOE’s Office of Science through the Joint Center for Energy Storage Research, a DOE Energy Innovation Hub. Part of the work was done at the Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory and at the Advanced Light Source at Berkeley Lab, both DOE Office of Science User Facilities.
Balsara was one of the co-founders of battery startup Seeo, founded in 2007 to develop a solid block copolymer electrolyte. Balsara and DeSimone have also co-founded a startup company called Blue Current, which aims to commercialize a perfluoropolyether-based nonflammable electrolyte they developed together.
Page 2 of 2Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
The Chemical Connection: Experience and Wisdom Gained by Doing Business
09/03/2025 | Don Ball -- Column: The Chemical ConnectionA well-managed company learns to adjust its strategies and processes based on what it learns during challenging times. The experience gained from making (or losing) a difficult sale is invaluable in adapting new sales and manufacturing processes necessary to make that sale the next time, no matter how painful those new processes might be.
Materials and Manufacturing for the AI Era: The Next PCB Frontier
08/08/2025 | Edy Yu, Chief Editor, ECIO, and the I-Connect007 Editorial TeamAI is pushing hardware to its limits, and the bottleneck isn’t design anymore—it’s materials. Next-generation AI servers aren’t just heavier on layer counts. They demand better materials to handle the speed, heat, and signal integrity requirements of 400G, 800G, and even 1.6T Ethernet systems. Many server motherboards are already 32–36 layers. For the next wave of 1.6T-capable boards, expect 40–50 layers, which must maintain high-frequency performance without degrading signal quality.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/27/2025 | Nolan Johnson, I-Connect007While news outside our industry keeps our attention occupied, the big news inside the industry is the rechristening of IPC as the Global Electronics Association. My must-reads begins with Marcy LaRont’s exclusive and informative interview with Dr. John Mitchell, president and CEO of the Global Electronics Association. For designers, have we finally reached the point in time where autorouters will fulfill their potential?
The Chemical Connection: Through-glass Vias in Glass Substrates
06/24/2025 | Don Ball -- Column: The Chemical ConnectionThis month’s theme is vias and how best to ensure via quality and reliability. I don’t have much expertise in this process area or much to contribute that most of you don’t already know. However, I’ve recently become peripherally involved in a via technology that may be of more than academic interest to some of us. It entails putting vias in a material not usually associated with PCB manufacturing: through-glass vias (TGVs) in glass substrates.
Trouble in Your Tank: Causes of Plating Voids, Pre-electroless Copper
05/09/2025 | Michael Carano -- Column: Trouble in Your TankIn the business of printed circuit fabrication, yield-reducing and costly defects can easily catch even the most seasoned engineers and production personnel off guard. In this month’s column, I’ll investigate copper plating voids with their genesis in the pre-plating process steps.