Computer Model Matches Humans at Predicting How Objects Move
January 5, 2016 | MITEstimated reading time: 4 minutes
We humans take for granted our remarkable ability to predict things that happen around us. For example, consider Rube Goldberg machines: One of the reasons we enjoy them is because we can watch a chain-reaction of objects fall, roll, slide and collide, and anticipate what happens next.
But how do we do it? How do we effortlessly absorb enough information from the world to be able to react to our surroundings in real-time? And, as a computer scientist might then wonder, is this something that we can teach machines?
That last question has recently been partially answered by researchers at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL), who have developed a computational model that is just as accurate as humans at predicting how objects move.
By training itself on real-world videos and using a “3-D physics engine” to simulate human intuition, the system — dubbed “Galileo” — can infer the physical properties of objects and predict the outcome of a variety of physical events.
While the researchers’ paper focused on relatively simple experiments involving ramps and collisions, they say that the model’s ability to generalize its findings and continuously improve itself means that it could readily predict a range of actions.
“From a ramp scenario, for example, Galileo can infer the density of an object and then predict if it can float,” says postdoc Ilker Yildirim, who was lead author alongside CSAIL PhD student Jiajun Wu. “This is just the first step in imbuing computers with a deeper understanding of dynamic scenes as they unfold.”
Researchers fed their physics prediction system videos of collisions, shown as screenshots in (a) and (b), which were then converted into simulations generated by the 3-D physics engine, shown in (c) and (d).
The paper, which was presented this past month at the Conference on Neural Information Processing Systems (NIPS) in Montreal, was co-authored by postdoc Joseph Lim and professor William Freeman, as well as professor Joshua Tenenbaum from the Department of Brain and Cognitive Sciences.
Page 1 of 3
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/06/2025 | Nolan Johnson, I-Connect007Maybe you’ve noticed that I’ve been taking to social media lately to about my five must-reads of the week. It’s just another way we’re sharing our curated content with you. I pay special attention to what’s happening in our industry, and I can help you know what’s most important to read about each week. Follow me (and I-Connect007) on LinkedIn to see these and other updates.
INEMI Interim Report: Interconnection Modeling and Simulation Results for Low-Temp Materials in First-Level Interconnect
05/30/2025 | iNEMIOne of the greatest challenges of integrating different types of silicon, memory, and other extended processing units (XPUs) in a single package is in attaching these various types of chips in a reliable way.
Siemens Leverages AI to Close Industry’s IC Verification Productivity Gap in New Questa One Smart Verification Solution
05/13/2025 | SiemensSiemens Digital Industries Software announced the Questa™ One smart verification software portfolio, combining connectivity, a data driven approach and scalability with AI to push the boundaries of the Integrated Circuit (IC) verification process and make engineering teams more productive.
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.