-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAll About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Happy’s Essential Skills: The Need for Total Quality Control (Six Sigma and Statistical Tools): Part 1
January 13, 2016 | Happy HoldenEstimated reading time: 11 minutes
The key principles[2] of TQC are:
1. Management Commitment
Top management has to drive any system as large or as complex as TQC. Until management makes that commitment, a bottoms-up approach of sending engineers or workers to SPC or quality classes will not take root. My experience with this started when our group VP introduced TQC to his staff. He gave each of them a personal project and then had each of them train their staff after which they gave out individual projects. This 4 Episodes of TQC was labeled LUTI for Learn, Use, Teach, Individualize, and so forth, down through the structure until it got to the individual supervisor and worker.
Figure 2: TQC Improvement Circle consisting of plan-do-check-act.
2. Process Improvement
The TQC Improvement Circle or PDCA steps are used in a continuous manner to assess the current situation, propose and implement solutions, test effectiveness of the solution, and standardize the process on those solutions that are found effective (Figure 2). Data is used to prioritize the improvements on which to work.
• Plan (drive, direct)
• Do (deploy, support, participate)
• Check (review)
• Act (recognize, communicate, revise)
3. Employee Empowerment
• Training
• Suggestion scheme
• Measurement and recognition
• Excellence teams
4. Fact-Based Decision Making
• SPC (statistical process control)
• DOE, FMEA
• The 6 statistical tools
• TOPS (Ford 8D—team-oriented problem solving)
Continuous Improvement
• Systematic measurement and focus on CONQ
• Excellence teams
• Cross-functional process management
• Attain, maintain, improve standards
Customer Focus
• Supplier partnership
• Service relationship with internal customers
• Never compromise quality
• Customer-driven standards
The Concept of Continuous Improvement by TQC
TQC is mainly concerned with continuous improvement in all work, from high-level strategic planning and decision-making, to detailed execution of work on the shop floor. It stems from the belief that mistakes can be avoided and defects can be prevented. It leads to continuously improving results, in all aspects of work, because of continuously improving capabilities, people, processes, technology and machine capabilities.
Continuous improvement must deal not only with improving results, but more importantly with improving capabilities to produce better results in the future. The five major areas of focus for capability improvement are demand generation, supply generation, technology, operations and people capability.
Figure 3: TQC central principles and what it is NOT.
A central principle of TQC (voiced by Dr. Deming) is that people may make mistakes, but most of them are caused, or at least permitted, by faulty systems and processes. This means that the root cause of such mistakes can be identified and eliminated, and repetition can be prevented by changing the process[3]. There are three major mechanisms of prevention:
1. Preventing mistakes (defects) from occurring (mistake-proofing or poka-yoke).
2. Where mistakes cannot be absolutely prevented, detecting them early to prevent them from being passed down the value-added chain (inspection at source or by the next operation).
3. Where mistakes recur, stopping production until the process can be corrected, to prevent the production of more defects (stop in time).Page 2 of 4
Suggested Items
The Knowledge Base: A Conference for Cleaning and Coating of Mission-critical Electronics
07/08/2025 | Mike Konrad -- Column: The Knowledge BaseIn electronics manufacturing, there’s a dangerous misconception that cleaning and coating are standalone options, that they operate in different lanes, and that one can compensate for the other. Let’s clear that up now. Cleaning and conformal coating are not separate decisions. They are two chapters in the same story—the story of reliability.
SMT007 Magazine July—What’s Your Competitive Sweet Spot?
07/01/2025 | I-Connect007 Editorial TeamAre you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche—what are their insights? In the July 2025 issue of SMT007 Magazine, we spotlight companies thriving by redefining or reinforcing their niche and offer insights to help you evaluate your own.
Smarter Machines Use AOI to Transform PCB Inspections
06/30/2025 | Marcy LaRont, PCB007 MagazineAs automated optical inspection (AOI) evolves from traditional end-of-process inspections to proactive, in-line solutions, the integration of AI and machine learning is revolutionizing defect reduction and enhancing yields, marking a pivotal shift in how quality is managed in manufacturing.
Magnalytix and Foresite to Host Technical Webinar on SIR Testing and Functional Reliability
06/26/2025 | MAGNALYTIXMagnalytix, in collaboration with Foresite Inc., is pleased to announce an upcoming one-hour Webinar Workshop titled “Comparing SIR IPC B-52 to Umpire 41 Functional & SIR Test Method.” This session will be held on July 24, 2025, and is open to professionals in electronics manufacturing, reliability engineering, and process development seeking insights into new testing standards for climatic reliability.
The Death of the Microsection
06/26/2025 | Bob Neves, Reliability Assessment Solutions, Inc.I got my start out of college grinding and polishing PCB microsections. My thumbs are a bit arthritic today because of the experience (microsection grinders know what I mean). Back then, via structures were rather large, and getting to the center in six steps of grinding and polishing was easy compared to what my team has been doing recently at the lab.