Unique Two-Level Cathode Structure Improves Battery Performance
January 13, 2016 | Brookhaven National LaboratoryEstimated reading time: 5 minutes
Building a better battery is a delicate balancing act. Increasing the amounts of chemicals whose reactions power the battery can lead to instability. Similarly, smaller particles can improve reactivity but expose more material to degradation. Now a team of scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, and SLAC National Accelerator Laboratory say they've found a way to strike a balance—by making a battery cathode with a hierarchical structure where the reactive material is abundant yet protected.
Test batteries incorporating this cathode material exhibited improved high-voltage cycling behavior—the kind you'd want for fast-charging electric vehicles and other applications that require high-capacity storage. The scientists describe the micro-to-nanoscale details of the cathode material in a paper published in the journal Nature Energy January 11, 2016.
"Our colleagues at Berkeley Lab were able to make a particle structure that has two levels of complexity where the material is assembled in a way that it protects itself from degradation," explained Brookhaven Lab physicist and Stony Brook University adjunct assistant professor Huolin Xin, who helped characterize the nanoscale details of the cathode material at Brookhaven Lab's Center for Functional Nanomaterials (CFN).
X-ray imaging performed by scientists at the Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC along with Xin's electron microscopy at CFN revealed spherical particles of the cathode material measuring millionths of meter, or microns, in diameter made up of lots of smaller, faceted nanoscale particles stacked together like bricks in a wall. The characterization techniques revealed important structural and chemical details that explain why these particles perform so well.
The lithium ion shuttle
Chemistry is at the heart of all lithium-ion rechargeable batteries, which power portable electronics and electric cars by shuttling lithium ions between positive and negative electrodes bathed in an electrolyte solution. As lithium moves into the cathode, chemical reactions generate electrons that can be routed to an external circuit for use. Recharging requires an external current to run the reactions in reverse, pulling the lithium ions out of the cathode and sending them to the anode.
Reactive metals like nickel have the potential to make great cathode materials—except that they are unstable and tend to undergo destructive side reactions with the electrolyte. So the Brookhaven, Berkeley, and SLAC battery team experimented with ways to incorporate nickel but protect it from these destructive side reactions.
They sprayed a solution of lithium, nickel, manganese, and cobalt mixed at a certain ratio through an atomizer nozzle to form tiny droplets, which then decomposed to form a powder. Repeatedly heating and cooling the powder triggered the formation of tiny nanosized particles and the self-assembly of these particles into the larger spherical, sometimes hollow, structures.
Using x-rays at SLAC's SSRL, the scientists made chemical "fingerprints" of the micron-scale structures. The synchrotron technique, called x-ray spectroscopy, revealed that the outer surface of the spheres was relatively low in nickel and high in unreactive manganese, while the interior was rich in nickel.
"The manganese layer forms an effective barrier, like paint on a wall, protecting the inner structure of the nickel-rich 'bricks' from the electrolyte," Xin said.
But how were the lithium ions still able to enter the material to react with the nickel? To find out, Xin's group at the CFN ground up the larger particles to form a powder composed of much smaller clumps of the nanoscale primary particles with some of the interfaces between them still intact.
"These samples show a small subset of the bricks that form the wall. We wanted to see how the bricks are put together. What kind of cement or mortar binds them? Are they layered together regularly or are they randomly oriented with spaces in between?" Xin said.
Page 1 of 2
Suggested Items
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.
New High Power 3D AXI for Power Electronics from Test Research, Inc.
04/17/2025 | TRITest Research, Inc. (TRI), a leading provider of Test and Inspection solutions for the electronics manufacturing industry, proudly announces the launch of the 3D AXI TR7600HP system. Designed for power semiconductor inspection, the TR7600HP enhances accuracy and efficiency in detecting defects in components such as IGBTs, MOSFETs, SiC inverters, and Paladin Connectors.
Real Time with... IPC APEX EXPO 2025: MivaTek is Revolutionizing Circuit Board Manufacturing with DART Technology
04/02/2025 | Real Time with...IPC APEX EXPOBrendan Hogan from MivaTek Global discusses the company's focus on direct imaging for circuit boards and semiconductors. MivaTek is introducing DART technology for dynamic feature size adjustments. This technology enhances precision, improving registration and throughput.
Real Time with... IPC APEX EXPO 2025: Schmoll America—Committed to Supporting Customers
03/31/2025 | Real Time with...IPC APEX EXPOKurt Palmer of Schmoll America and Stephan Kunz of Schmoll Maschinen GmbH had a great show, reporting solid attendance and good opportunities, as Schmoll America celebrates its first anniversary. With a booth full of equipment for attendees to see and touch, they showcased unique products like the Pico laser and X-ray machine, and discussed plans for a new facility.
Technica USA and CBT Introducing TiTAN Hybrid at IPC APEX EXPO 2025
03/18/2025 | Technica USAThe wait is over! Technica and CBT are proud to unveil TiTAN Hybrid, a groundbreaking innovation set to redefine the PCB industry. Designed for unmatched performance, efficiency, and adaptability, this cutting-edge laser imaging technology brings the future to you—today.