New Concept for Digital Data Storage
January 15, 2016 | Forschungszentrum JülichEstimated reading time: 2 minutes
Antiferromagnetic materials, contrary to ferromagnets such as iron, are not influenced by external magnetic fields. Researchers from Great Britain, the Czech Republic, Germany and Poland show how they could still be used to store data more reliably than using ferromagnetic materials. They succeeded for the first time in electrically controlling the switching and read-out of the magnetic moment of an antiferromagnetic material.
Ferromagnets react to external magnetic fields by reorienting their atomic magnetic moments, or, the so-called spins. For magnetic strips on credit cards or hard drives on computers, this effect is useful on the one hand, as it allows data to be written. On the other hand, it is necessary to shield these materials from unwanted magnetic fields, generated for instance by certain kinds of medical equipment, so that data is not deleted by mistake.
In antiferromagnets, half of the spins point in one direction, while the other half point in the opposite direction, in a kind of chessboard pattern. The antiferromagnetic materials are therefore not influenced by magnetic fields, and are of no use in magnetic data writing methods commonly utilized today. Until now, it has only been possible for them to be used in the field of information technology in combination with other classes of materials. However, due to the fact that antiferromagnets are magnetically more robust and can in principle be switched much faster than ferromagnets, the scientists from Forschungszentrum Jülich and their European partners looked for a way to develop them into an independent data storage material class.
Using samples made from copper manganese arsenide, they were able to demonstrate that the alignment of the magnetic moments of certain types of antiferromagnets could be controlled with electrical pulses. "The electric current brings about a quantum mechanical torque on individual spins and allows each of them to tilt 90 degrees", reported Dr. Frank Freimuth of the Peter Grünberg Institute and the Institute for Advanced Simulation in Jülich.
Simulation software developed in Jülich helped the theoretical physicist and his colleagues understand in detail just how the switching occurs. Importantly, the electric current must flow parallel to the original direction of the spin. To switch the spins back, a current flowing perpendicular to the first electric pulse is needed. To read out the various states of the magnet, the researchers took advantage of the fact that the electrical resistance of the material depends on the spin direction.
Page 1 of 2
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
MacDermid Alpha Showcases Advanced Interconnect Solutions at PCIM Asia 2025
09/18/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronic Solutions, a global leader in materials for power electronics and semiconductor assembly, will showcase its latest interconnect innovations in electronic interconnect materials at PCIM Asia 2025, held from September 24 to 26 at the Shanghai New International Expo Centre, Booth N5-E30
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.