Physicists Control Electrons at Femtosecond Timescales
January 22, 2016 | MITEstimated reading time: 4 minutes
In a previous, unrelated experiment, Jarillo-Herrero and his colleagues fabricated an incredibly thin, sandwich-like device composed of two sheets of graphene, each a single atom thin, separated by an insulating layer of boron-nitride. The group had been subjecting the structure to varying intensities of voltage and light, and observing the resulting current, or flow of electrons, from one layer to another.
They found that, at certain voltages and wavelengths of light, they could produce a relatively strong current across the boron-nitride layer — an indication that high-energy electrons were tunneling from one graphene sheet to the other without losing much energy.
The researchers followed up on their observations to see how the flow of current within their device changed as they varied the voltage and light wavelength they applied. As they shone light onto the top layer of graphene, they were able to tune the flow of current within just a few femtoseconds.
Depending on the voltage and light wavelength applied, the researchers could direct high-energy electrons to either stay and dissipate their energy within the top graphene layer, or tunnel across the boron-nitride layer and into the bottom graphene sheet, where they could then interact with other electrons and scatter their energy.
“Typically you can only start doing things after maybe 1,000 femtoseconds, after these ultrafast interactions have already taken place,” Jarillo-Herrero says. “We’re able to … decide whether the electron goes here or there before it interacts with any other electron, within a few femtoseconds.”
Getting out of graphene
The team’s ultrafast control may stem from the nature of graphene itself. Because graphene is so exceptionally thin, electrons don’t have very far to jump if they get the right push.
“This femtosecond response is because of the 2-D structure of graphene,” Ma says. “It’s just one atom thick, and the electrons are already at the surface, so it’s easier for them to jump out and onto another material.”
As the team soon found, coaxing electrons to jump from one sheet of graphene to another required the right combination of voltage and light. Ma and Jarillo-Herrero plotted their experimental results and identified combinations of voltage and light wavelength that would direct high-energy electrons to either stay within the top graphene layer or jump to the bottom layer.
Page 2 of 3
Suggested Items
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Sierra Circuits Boosts High Precision PCB Manufacturing with Schmoll Technology
06/16/2025 | Schmoll MaschinenSierra Circuits has seen increased success in production of multilayer HDI boards and high-speed signal architectures through the integration of a range of Schmoll Maschinen systems. The company’s current setup includes four MXY-6 drilling machines, two LM2 routing models, and a semi-automatic Optiflex II innerlayer punch.
Elementary, Mr. Watson: PCB Routing: The Art—and Science—of Connection
06/11/2025 | John Watson -- Column: Elementary, Mr. WatsonMany people who design circuit boards love the routing part of the design. This is partially because we want to stop looking at the annoying rat's nest of connections, which seem to have no rhyme or reason at first glance. We want to get to something more exciting. Routing is the ultimate part of solving the puzzle. You take all the messy lines from the schematic and turn them into neat, organized paths.
Connect the Dots: Proactive Controlled Impedance
05/29/2025 | Matt Stevenson -- Column: Connect the DotsFrom data centers to smartphones, designers know that the ohms have it. Getting impedance right ensures all-important signal integrity and delivers high-performing boards. Our designers understand the importance of controlled impedance, but not everyone addresses it in their designs. The most common and important controlled impedance types we see include microstrip, stripline, embedded microstrip, and differential pairs.